UAP-Data-Analysis-Tool / magnetic.py
Ashoka74's picture
Update magnetic.py
46b302d verified
raw
history blame
39.3 kB
import math
import pandas as pd
import numpy as np
import json
import requests
import datetime
from datetime import timedelta
from PIL import Image
# alternative to PIL
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
import matplotlib.dates as mdates
import seaborn as sns
from IPython.display import Image as image_display
path = os.getcwd()
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from IPython.display import display
from dateutil import parser
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import streamlit as st
if 'form_submitted' not in st.session_state:
st.session_state['form_submitted'] = False
st.title('Magnetic Correlations Dashboard')
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
plt.xticks(rotation=rotation)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
def get_stations():
base_url = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetCapabilities&format=json'
response = requests.get(base_url)
data = response.json()
dataframe_stations = pd.DataFrame.from_dict(data['ObservatoryList'])
return dataframe_stations
def get_haversine_distance(lat1, lon1, lat2, lon2):
R = 6371
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = R * c
return d
def compare_stations(test_lat_lon, data_table, distance=1000, closest=False):
table_updated = pd.DataFrame()
distances = dict()
for lat,lon,names in data_table[['Latitude', 'Longitude', 'Name']].values:
harv_distance = get_haversine_distance(test_lat_lon[0], test_lat_lon[1], lat, lon)
if harv_distance < distance:
#print(f"Station {names} is at {round(harv_distance,2)} km from the test point")
table_updated = pd.concat([table_updated, data_table[data_table['Name'] == names]])
distances[names] = harv_distance
if closest:
closest_station = min(distances, key=distances.get)
#print(f"The closest station is {closest_station} at {round(distances[closest_station],2)} km")
table_updated = data_table[data_table['Name'] == closest_station]
table_updated['Distance'] = distances[closest_station]
return table_updated
def get_data(IagaCode, start_date, end_date):
try:
start_date_ = datetime.datetime.strptime(start_date, '%Y-%m-%d')
except ValueError as e:
print(f"Error: {e}")
start_date_ = pd.to_datetime(start_date)
try:
end_date_ = datetime.datetime.strptime(end_date, '%Y-%m-%d')
except ValueError as e:
print(f"Error: {e}")
end_date_ = pd.to_datetime(end_date)
duration = end_date_ - start_date_
# Define the parameters for the request
params = {
'Request': 'GetData',
'format': 'PNG',
'testObsys': '0',
'observatoryIagaCode': IagaCode,
'samplesPerDay': 'minute',
'publicationState': 'Best available',
'dataStartDate': start_date,
# make substraction
'dataDuration': duration.days,
'traceList': '1234',
'colourTraces': 'true',
'pictureSize': 'Automatic',
'dataScale': 'Automatic',
'pdfSize': '21,29.7',
}
base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
#base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'
for base_url in [base_url_json]:#, base_url_img]:
response = requests.get(base_url, params=params)
if response.status_code == 200:
content_type = response.headers.get('Content-Type')
if 'image' in content_type:
# f"custom_plot_{new_dataset.iloc[0]['IagaCode']}_{str_date.replace(':', '_')}.png"
# output_image_path = "plot_image.png"
# with open(output_image_path, 'wb') as file:
# file.write(response.content)
# print(f"Image successfully saved as {output_image_path}")
# # Display the image
# img = mpimg.imread(output_image_path)
# plt.imshow(img)
# plt.axis('off') # Hide axes
# plt.show()
# img_answer = Image.open(output_image_path)
img_answer = None
else:
print(f"Unexpected content type: {content_type}")
#print("Response content:")
#print(response.content.decode('utf-8')) # Attempt to print response as text
# return json
answer = response.json()
else:
print(f"Failed to retrieve data. HTTP Status code: {response.status_code}")
print("Response content:")
print(response.content.decode('utf-8'))
return answer#, img_answer
# def get_data(IagaCode, start_date, end_date):
# # Convert dates to datetime
# try:
# start_date_ = pd.to_datetime(start_date)
# end_date_ = pd.to_datetime(end_date)
# except ValueError as e:
# print(f"Error: {e}")
# return None, None
# duration = (end_date_ - start_date_).days
# # Define the parameters for the request
# params = {
# 'Request': 'GetData',
# 'format': 'json',
# 'testObsys': '0',
# 'observatoryIagaCode': IagaCode,
# 'samplesPerDay': 'minute',
# 'publicationState': 'Best available',
# 'dataStartDate': start_date_.strftime('%Y-%m-%d'),
# 'dataDuration': duration,
# 'traceList': '1234',
# 'colourTraces': 'true',
# 'pictureSize': 'Automatic',
# 'dataScale': 'Automatic',
# 'pdfSize': '21,29.7',
# }
# base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
# base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'
# try:
# # Request JSON data
# response_json = requests.get(base_url_json, params=params)
# response_json.raise_for_status() # Raises an error for bad status codes
# data = response_json.json()
# # Request Image
# params['format'] = 'png'
# response_img = requests.get(base_url_img, params=params)
# response_img.raise_for_status()
# # Save and display image if response is successful
# if 'image' in response_img.headers.get('Content-Type'):
# output_image_path = "plot_image.png"
# with open(output_image_path, 'wb') as file:
# file.write(response_img.content)
# print(f"Image successfully saved as {output_image_path}")
# img = mpimg.imread(output_image_path)
# plt.imshow(img)
# plt.axis('off')
# plt.show()
# img_answer = Image.open(output_image_path)
# else:
# img_answer = None
# return data, img_answer
# except requests.RequestException as e:
# print(f"Request failed: {e}")
# return None, None
# except ValueError as e:
# print(f"JSON decode error: {e}")
# return None, None
def clean_uap_data(dataset, lat, lon, date):
# Assuming 'nuforc' is already defined
processed = dataset[dataset[[lat, lon, date]].notnull().all(axis=1)]
# Converting 'Lat' and 'Long' columns to floats, handling errors
processed[lat] = pd.to_numeric(processed[lat], errors='coerce')
processed[lon] = pd.to_numeric(processed[lon], errors='coerce')
# if processed[date].min() < pd.to_datetime('1677-09-22'):
# processed.loc[processed[date] < pd.to_datetime('1677-09-22'), 'corrected_date'] = pd.to_datetime('1677-09-22 00:00:00')
procesed = processed[processed[date] >= '1677-09-22']
# convert date to str
#processed[date] = processed[date].astype(str)
# Dropping rows where 'Lat' or 'Long' conversion failed (i.e., became NaN)
processed = processed.dropna(subset=[lat, lon])
return processed
def plot_overlapped_timeseries(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
for i, component in enumerate(components):
axs[i].patch.set_alpha(0) # Make subplot background transparent
axs[i].set_ylabel(component, color='orange')
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange') # Change tick color
axs[i].set_title(f'{component}', color='orange')
axs[i].set_xlabel('Time Difference from Event (hours)', color='orange')
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
event_time = pd.to_datetime(event_time).tz_localize(None)
# Calculate time difference from event
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours
# Filter data within the specified window
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
# normalize component data
df_window[component] = (df_window[component] - df_window[component].mean()) / df_window[component].std()
axs[i].plot(df_window['time_diff'], df_window[component], color=colors[i], alpha=0.7, label=f'Event {j+1}', linewidth=1)
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
#axs[i].legend(loc='upper left', bbox_to_anchor=(1, 1))
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Overlapped Time Series of Components', fontsize=16, color='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.95, right=0.85)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def plot_average_timeseries(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
for i, component in enumerate(components):
axs[i].patch.set_alpha(0)
axs[i].set_ylabel(component, color='orange')
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange')
all_data = []
time_diffs = []
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
event_time = pd.to_datetime(event_time).tz_localize(None)
# Calculate time difference from event
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours
# Filter data within the specified window
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
# Normalize component data
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()
all_data.append(df_window[component].values)
time_diffs.append(df_window['time_diff'].values)
# Calculate average and standard deviation
try:
avg_data = np.mean(all_data, axis=0)
except:
avg_data = np.zeros_like(all_data[0])
try:
std_data = np.std(all_data, axis=0)
except:
std_data = np.zeros_like(avg_data)
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Average Time Series of Components', fontsize=16, color='orange')
# Plot average line
axs[i].plot(time_diffs[0], avg_data, color=colors[i], label='Average')
# Plot standard deviation as shaded region
try:
axs[i].fill_between(time_diffs[0], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
except:
pass
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
# orange frame, orange label legend
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.95, right=0.85)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def align_series(reference, series):
reference = reference.flatten()
series = series.flatten()
_, path = fastdtw(reference, series, dist=euclidean)
aligned = np.zeros(len(reference))
for ref_idx, series_idx in path:
aligned[ref_idx] = series[series_idx]
return aligned
def plot_average_timeseries_with_dtw(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')
for i, component in enumerate(components):
axs[i].patch.set_alpha(0)
axs[i].set_ylabel(component, color='orange', rotation=90)
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange')
all_aligned_data = []
reference_df = None
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
event_time = pd.to_datetime(event_time).tz_localize(None)
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()
if reference_df is None:
reference_df = df_window
all_aligned_data.append(reference_df[component].values)
else:
try:
aligned_series = align_series(reference_df[component].values, df_window[component].values)
all_aligned_data.append(aligned_series)
except:
pass
# Calculate average and standard deviation of aligned data
all_aligned_data = np.array(all_aligned_data)
avg_data = np.mean(all_aligned_data, axis=0)
# round float to avoid sqrt errors
def calculate_std(data):
if data is not None and len(data) > 0:
data = np.array(data)
std_data = np.std(data)
return std_data
else:
return "Data is empty or not a list"
std_data = calculate_std(all_aligned_data)
# Plot average line
axs[i].plot(reference_df['time_diff'], avg_data, color=colors[i], label='Average')
# Plot standard deviation as shaded region
try:
axs[i].fill_between(reference_df['time_diff'], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
except TypeError as e:
#print(f"Error: {e}")
pass
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Average Time Series of Components (FastDTW Aligned)', fontsize=16, color='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.85, right=0.85, left=0.1)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def plot_data_custom(df, date, save_path=None, subtitle=None):
df['datetime'] = pd.to_datetime(df['datetime'])
event = pd.to_datetime(date)
window = timedelta(hours=12)
x_min = event - window
x_max = event + window
fig, axs = plt.subplots(4, 1, figsize=(12, 12), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')
# if df[component].isnull().all().all():
# return None
for i, component in enumerate(components):
axs[i].plot(df['datetime'], df[component], label=component, color=colors[i])
axs[i].axvline(x=event, color='red', linewidth=2, label='Event', linestyle='--')
axs[i].set_ylabel(component, color='orange', rotation=90)
axs[i].set_xlim(x_min, x_max)
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')
axs[i].grid(True, color='orange', alpha=0.3)
axs[i].patch.set_alpha(0) # Make subplot background transparent
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
axs[i].xaxis.set_major_locator(mdates.HourLocator(interval=1))
axs[i].tick_params(axis='both', colors='orange')
plt.setp(axs[-1].xaxis.get_majorticklabels(), rotation=45)
axs[-1].set_xlabel('Hours', color='orange')
fig.suptitle(f'Time Series of Components with Event Marks\n{subtitle}', fontsize=12, color='orange')
plt.tight_layout()
#plt.subplots_adjust(top=0.85)
plt.subplots_adjust(top=0.85, right=0.85, left=0.1)
if save_path:
fig.savefig(save_path, transparent=True)
plt.close(fig)
return save_path
else:
return fig
def batch_requests(stations, dataset, lon, lat, date, distance=100):
results = {"station": [], "data": [], "image": [], "custom_image": []}
all_data = []
all_event_times = []
for lon_, lat_, date_ in dataset[[lon, lat, date]].values:
test_lat_lon = (lat_, lon_)
try:
str_date = pd.to_datetime(date_).strftime('%Y-%m-%dT%H:%M:%S')
except:
str_date = date_
twelve_hours = pd.Timedelta(hours=12)
forty_eight_hours = pd.Timedelta(hours=48)
try:
str_date_start = (pd.to_datetime(str_date) - twelve_hours).strftime('%Y-%m-%dT%H:%M:%S')
str_date_end = (pd.to_datetime(str_date) + forty_eight_hours).strftime('%Y-%m-%dT%H:%M:%S')
except Exception as e:
print(f"Error: {e}")
pass
try:
new_dataset = compare_stations(test_lat_lon, stations, distance=distance, closest=True)
station_name = new_dataset['Name']
station_distance = new_dataset['Distance']
test_ = get_data(new_dataset.iloc[0]['IagaCode'], str_date_start, str_date_end)
if test_ and any(test_.get(key) for key in ['X', 'Y', 'Z', 'S']):
plotted = pd.DataFrame({
'datetime': test_['datetime'],
'X': test_.get('X', []),
'Y': test_.get('Y', []),
'Z': test_.get('Z', []),
'S': test_.get('S', []),
})
if plotted[['X', 'Y', 'Z', 'S']].any().any():
all_data.append(plotted)
all_event_times.append(pd.to_datetime(date_))
additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\nDistance: {round(station_distance.values[0], 2)} km"
fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle=additional_data)
with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
st.pyplot(fig)
status.update(f'Magnetic Data: {date_} - Finished!')
else:
print(f"No data for X, Y, Z, or S for date: {date_}")
except Exception as e:
#print(f"An error occurred: {e}")
pass
# if test_:
# results["station"].append(new_dataset.iloc[0]['IagaCode'])
# results["data"].append(test_)
# plotted = pd.DataFrame({
# 'datetime': test_['datetime'],
# 'X': test_['X'],
# 'Y': test_['Y'],
# 'Z': test_['Z'],
# 'S': test_['S'],
# })
# all_data.append(plotted)
# all_event_times.append(pd.to_datetime(date_))
# # print(date_)
# additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\n Distance:{round(station_distance.values[0],2)} km"
# fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle =additional_data)
# with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
# st.pyplot(fig)
# status.update(f'Magnetic Data: {date_} - Finished!')
# except Exception as e:
# #print(f"An error occurred: {e}")
# pass
if all_data:
fig_overlapped = plot_overlapped_timeseries(all_data, all_event_times)
display(fig_overlapped)
plt.close(fig_overlapped)
# fig_average = plot_average_timeseries(all_data, all_event_times)
# st.pyplot(fig_average)
fig_average_aligned = plot_average_timeseries_with_dtw(all_data, all_event_times)
with st.status(f'Dynamic Time Warping Data', expanded=False) as stts:
st.pyplot(fig_average_aligned)
return results
df = pd.DataFrame()
# Upload dataset
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
stations = get_stations()
st.write("Dataset Loaded:")
df = filter_dataframe(df)
st.dataframe(df)
# Select columns
with st.form(border=True, key='Select Columns for Analysis'):
lon_col = st.selectbox("Select Longitude Column", df.columns)
lat_col = st.selectbox("Select Latitude Column", df.columns)
date_col = st.selectbox("Select Date Column", df.columns)
distance = st.number_input("Enter Distance", min_value=0, value=100)
if st.form_submit_button("Process Data"):
cases = clean_uap_data(df, lat_col, lon_col, date_col)
results = batch_requests(stations, cases, lon_col, lat_col, date_col, distance=distance)