Ashoka74's picture
gpt-4o-mini set as default
d8ef656 verified
raw
history blame
27.5 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import openai
from openai import OpenAI
import os
import json
# this is a test comment
import plotly.graph_objects as go
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
class CachedUAPParser(UAPParser):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = {}
def parse_responses(self):
parsed_responses = {}
not_parsed = 0
try:
for k, v in self.responses.items():
try:
parsed_responses[k] = json.loads(v)
except:
try:
parsed_responses[k] = json.loads(v.replace("'", '"'))
except:
not_parsed += 1
# Update the cached responses
st.session_state['parsed_responses'] = parsed_responses
except Exception as e:
st.error(f"Error parsing responses: {e}")
st.write(f"Number of unparsed responses: {not_parsed}")
st.write(f"Number of parsed responses: {len(parsed_responses)}")
return st.session_state['parsed_responses']
def responses_to_df(self, col, parsed_responses):
try:
parsed_df = pd.DataFrame(parsed_responses).T
if col is not None:
parsed_df2 = pd.json_normalize(parsed_df[col])
parsed_df2.index = parsed_df.index
else:
parsed_df2 = pd.json_normalize(parsed_df)
parsed_df2.index = parsed_df.index
# Convert problematic columns to string
for column in parsed_df2.columns:
if parsed_df2[column].dtype == 'object':
parsed_df2[column] = parsed_df2[column].astype(str)
return parsed_df2
except Exception as e:
st.error(f"Error converting responses to DataFrame: {e}")
return pd.DataFrame() # Return an empty DataFrame if conversion fails
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def is_api_key_valid(api_key, model='gpt-4o-mini'):
try:
os.environ['OPENAI_API_KEY'] = api_key
client = OpenAI()
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": 'Say Hello World!'}])
text = response.choices[0].message.content
if len(text) >= 0:
return True
except Exception as e:
st.error(f'Error with the API key :{e}')
return False
def download_json(data):
json_str = json.dumps(data, indent=2)
return json_str
def convert_cached_data_to_df(parser):
if 'parsed_responses' in st.session_state:
#parser = CachedUAPParser(api_key=API_KEY, model='gpt-4o-mini')
try:
responses_df = parser.responses_to_df('sightingDetails', st.session_state['parsed_responses'])
except Exception as e:
st.warning(f"Error parsing with 'sightingDetails': {e}")
responses_df = parser.responses_to_df(None, st.session_state['parsed_responses'])
if not responses_df.empty:
st.dataframe(responses_df)
st.session_state['parsed_responses_df'] = responses_df.copy()
st.success("Successfully converted cached data to DataFrame.")
else:
st.error("Failed to create DataFrame from cached responses.")
else:
st.warning("No cached data available. Please parse the dataset first.")
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
try:
csv = df.to_csv().encode("utf-8")
except:
csv = df.to_csv().encode("utf-8-sig")
return csv
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
# if len(user_date_input) == 2:
# start_date, end_date = user_date_input
# df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
from config import FORMAT_LONG
OPENAI_KEY = st.secrets["OPENAI_KEY"]
GEMINI_KEY = st.secrets["GEMINI_KEY"]
with torch.no_grad():
torch.cuda.empty_cache()
#st.set_page_config(
# page_title="UAP ANALYSIS",
# page_icon=":alien:",
# layout="wide",
# initial_sidebar_state="expanded",
#)
st.title('UAP Feature Extraction')
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = None
if 'parsed_responses_df' not in st.session_state:
st.session_state['parsed_responses_df'] = None
if 'json_format' not in st.session_state:
st.session_state['json_format'] = None
if 'api_key_valid' not in st.session_state:
st.session_state['api_key_valid'] = False
if 'previous_api_key' not in st.session_state:
st.session_state['previous_api_key'] = None
# Unparsed data
#unparsed_tickbox = st.checkbox('Data Parsing')
#if unparsed_tickbox:
unparsed = st.file_uploader("Upload Raw DataFrame", type=["csv", "xlsx"])
if unparsed is not None:
try:
data = pd.read_csv(unparsed) if unparsed.type == "text/csv" else pd.read_excel(unparsed)
filtered_data = filter_dataframe(data)
st.dataframe(filtered_data)
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
modify_json = st.checkbox('Custom JSON')
API_KEY = st.text_input('OpenAI API Key', API_KEY, type='password', help="Enter your OpenAI API key")
if modify_json:
FORMAT_LONG = st.text_area('Custom JSON', FORMAT_LONG, height=500)
st.download_button("Save Format", FORMAT_LONG)
try:
json.loads(FORMAT_LONG)
st.session_state['json_format'] = True
except json.JSONDecodeError as e:
st.error(f"Invalid JSON format: {str(e)}")
st.session_state['json_format'] = False
st.stop() # Stop execution if JSON is invalid
# If the DataFrame is successfully created, allow the user to select a column
col_unparsed = st.selectbox("Select column corresponding to text", data.columns)
if st.button("Parse Dataset") and st.session_state['json_format']:
if API_KEY:
# Only validate if the API key has changed
if API_KEY != st.session_state['previous_api_key']:
if is_api_key_valid(API_KEY):
st.session_state['api_key_valid'] = True
st.session_state['previous_api_key'] = API_KEY
st.success("API key is valid!")
else:
st.session_state['api_key_valid'] = False
st.error("Invalid API key. Please check and try again.")
elif st.session_state['api_key_valid']:
st.success("API key is valid!")
if not API_KEY:# or not st.session_state['api_key_valid']:
st.warning("Please enter your API key to proceed.")
st.stop()
selected_column_data = filtered_data[col_unparsed].tolist()
st.session_state.result = selected_column_data
with st.status("Parsing...", expanded=True) as stat:
try:
st.write("Parsing descriptions...")
parser = CachedUAPParser(api_key=API_KEY, model='gpt-4o-mini', col=st.session_state.result)
descriptions = st.session_state.result
format_long = FORMAT_LONG
parser.process_descriptions(descriptions, format_long)
st.session_state['parsed_responses'] = parser.parse_responses()
try:
responses_df = parser.responses_to_df('sightingDetails', st.session_state['parsed_responses'])
except Exception as e:
st.warning(f"Error parsing with 'sightingDetails': {e}")
responses_df = parser.responses_to_df(None, st.session_state['parsed_responses'])
if not responses_df.empty:
st.dataframe(responses_df)
st.session_state['parsed_responses_df'] = responses_df.copy()
stat.update(label="Parsing complete", state="complete", expanded=False)
else:
st.error("Failed to create DataFrame from parsed responses.")
except Exception as e:
st.error(f"An error occurred during parsing: {str(e)}")
# Add download button for parsed data
if st.session_state['parsed_responses'] is not None:
json_str = download_json(st.session_state['parsed_responses'])
st.download_button(
label="Download Parsed Data as JSON",
data=json_str,
file_name="parsed_responses.json",
mime="application/json"
)
# Add button to convert cached data to DataFrame
if st.button("Convert Cached Data to DataFrame"):
convert_cached_data_to_df(st.session_state['parsed_responses'])
if st.session_state['parsed_responses_df'] is not None:
st.download_button(
label="Save CSV",
data=convert_df(st.session_state['parsed_responses_df']),
file_name="uap_data.csv",
mime="text/csv",
)
#except Exception as e:
# stat.update(label=f"Parsing failed: {e}", state="error")
# st.write("Parsing descriptions...")
# st.update_status("Parsing descriptions...")