import os import threading import uvicorn from fastapi import FastAPI from fastapi.responses import HTMLResponse, JSONResponse from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch from huggingface_hub import hf_hub_download import zipfile from datetime import datetime import random # ✅ Sabitler HF_TOKEN = os.environ.get("HF_TOKEN") MODEL_BASE = "UcsTurkey/kanarya-750m-fixed" FINE_TUNE_ZIP = "trained_model_000_000.zip" FINE_TUNE_REPO = "UcsTurkey/trained-zips" CONFIDENCE_THRESHOLD = -1.5 USE_SAMPLING = False # ✅ Sampling kapalı (test modu) FALLBACK_ANSWERS = [ "Bu konuda maalesef bilgim yok.", "Ne demek istediğinizi tam anlayamadım.", "Bu soruya şu an yanıt veremiyorum." ] def log(message): timestamp = datetime.now().strftime("%H:%M:%S") try: print(f"[{timestamp}] {message}") except UnicodeEncodeError: safe_message = message.encode("utf-8", errors="replace").decode("utf-8", errors="ignore") print(f"[{timestamp}] {safe_message}") os.sys.stdout.flush() app = FastAPI() chat_history = [] model = None tokenizer = None class Message(BaseModel): user_input: str def detect_environment(): device = "cuda" if torch.cuda.is_available() else "cpu" supports_bfloat16 = False gpu_name = "Yok" if device == "cuda": props = torch.cuda.get_device_properties(0) gpu_name = props.name major, _ = torch.cuda.get_device_capability(0) supports_bfloat16 = major >= 8 return { "device": device, "gpu_name": gpu_name, "supports_bfloat16": supports_bfloat16, "expected_config": { "gpu": "Nvidia A100", "min_vram": "16GB", "cpu": "8 vCPU" } } @app.get("/") def health(): return {"status": "ok"} @app.get("/status") def status(): env = detect_environment() return { "device": env["device"], "gpu": env["gpu_name"], "supports_bfloat16": env["supports_bfloat16"], "expected_config": env["expected_config"], "note": "Sistem bu bilgilerle çalışıyor. bfloat16 desteklenmiyorsa performans sınırlı olabilir." } @app.get("/start", response_class=HTMLResponse) def root(): return """ Fine-Tune Chat

Fine-tune Chat Test




        
    
    
    """

@app.post("/chat")
def chat(msg: Message):
    try:
        log(f"Kullanıcı mesajı alındı: {msg}")
        global model, tokenizer
        if model is None or tokenizer is None:
            log("Hata: Model henüz yüklenmedi.")
            return {"error": "Model yüklenmedi. Lütfen birkaç saniye sonra tekrar deneyin."}
        user_input = msg.user_input.strip()
        if not user_input:
            return {"error": "Boş giriş"}
        full_prompt = f"SORU: {user_input}\nCEVAP:"
        log(f"Prompt: {full_prompt}")
        inputs = tokenizer(full_prompt, return_tensors="pt")
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
        log(f"Tokenizer input_ids: {inputs['input_ids']}")
        log(f"input shape: {inputs['input_ids'].shape}")
        with torch.no_grad():
            if USE_SAMPLING:
                output = model.generate(
                    **inputs,
                    max_new_tokens=100,
                    do_sample=True,
                    temperature=0.7,
                    top_k=50,
                    top_p=0.95,
                    return_dict_in_generate=True,
                    output_scores=True,
                    suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
                )
            else:
                output = model.generate(
                    **inputs,
                    max_new_tokens=100,
                    do_sample=False,
                    return_dict_in_generate=True,
                    output_scores=True,
                    suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
                )
        generated_ids = output.sequences[0]
        generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
        answer = generated_text[len(full_prompt):].strip()
        if output.scores and len(output.scores) > 0:
            first_token_logit = output.scores[0][0]
            if torch.isnan(first_token_logit).any() or torch.isinf(first_token_logit).any():
                log("Geçersiz logit (NaN/Inf) tespit edildi, fallback cevabı gönderiliyor.")
                return {"answer": random.choice(FALLBACK_ANSWERS), "chat_history": chat_history}
            top_logit_score = torch.max(first_token_logit).item()
            log(f"İlk token logit skoru: {top_logit_score:.4f}")
            if top_logit_score < CONFIDENCE_THRESHOLD:
                fallback = random.choice(FALLBACK_ANSWERS)
                log(f"Düşük güven: fallback cevabı gönderiliyor: {fallback}")
                answer = fallback
        chat_history.append({"user": user_input, "bot": answer})
        log(f"Soru: {user_input} → Yanıt: {answer[:60]}...")
        return {"answer": answer, "chat_history": chat_history}
    except Exception as e:
        log(f"/chat sırasında hata oluştu: {e}")
        return {"error": str(e)}

def setup_model():
    try:
        global model, tokenizer
        log("Fine-tune zip indiriliyor...")
        zip_path = hf_hub_download(
            repo_id=FINE_TUNE_REPO,
            filename=FINE_TUNE_ZIP,
            repo_type="model",
            token=HF_TOKEN
        )
        extract_dir = "/app/extracted"
        os.makedirs(extract_dir, exist_ok=True)
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(extract_dir)
        log("Zip başarıyla açıldı.")
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        env = detect_environment()
        device = env["device"]
        dtype = torch.bfloat16 if env["supports_bfloat16"] else (torch.float16 if device == "cuda" else torch.float32)
        log(f"Ortam: GPU = {env['gpu_name']}, Device = {device}, bfloat16 destekleniyor mu: {env['supports_bfloat16']}")
        log(f"Model {device.upper()} üzerinde {dtype} precision ile yüklenecek.")
        log("Beklenen minimum sistem konfigürasyonu:")
        log(f"- GPU: {env['expected_config']['gpu']}")
        log(f"- GPU Bellek: {env['expected_config']['min_vram']}")
        log(f"- CPU: {env['expected_config']['cpu']}")
        base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
        peft_model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output"))
        model = peft_model.model.to(device)
        model.eval()
        log(f"Model başarıyla yüklendi. dtype={next(model.parameters()).dtype}, device={next(model.parameters()).device}")
    except Exception as e:
        log(f"setup_model() sırasında hata oluştu: {e}")

def run_server():
    log("Uvicorn sunucusu başlatılıyor...")
    uvicorn.run(app, host="0.0.0.0", port=7860)

log("===== Application Startup =====")
threading.Thread(target=setup_model, daemon=True).start()
threading.Thread(target=run_server, daemon=True).start()
log("Model yükleniyor, istekler ve API sunucusu hazırlanıyor...")
while True:
    try:
        import time
        time.sleep(60)
    except Exception as e:
        log(f"Ana bekleme döngüsünde hata: {e}")