import os import pandas as pd from datasets import Dataset from transformers import AutoTokenizer, AutoConfig from datetime import datetime from huggingface_hub import HfApi, create_repo, upload_folder, hf_hub_download import traceback import threading import uvicorn import time from fastapi import FastAPI from fastapi.responses import JSONResponse # === Sabitler === MODEL_NAME = "TURKCELL/Turkcell-LLM-7b-v1" HF_TOKEN = os.getenv("HF_TOKEN") SOURCE_DATASET_ID = "UcsTurkey/turkish-train-chunks" TRAIN_TARGET_DATASET_ID = "UcsTurkey/turkish-train-tokenized" RAG_TARGET_DATASET_ID = "UcsTurkey/turkish-train-rag" BUFFER_SIZE = 5 START_CHUNK_NUMBER = 0 PROCESS_CHUNK_COUNT = 776 GENERATE_TRAIN_DATA = False GENERATE_RAG_DATA = True CHUNK_FOLDER = "/data/chunks" TRAIN_FOLDER = "/data/tokenized_chunks" RAG_FOLDER = "/data/rag_chunks" CACHE_DIR = "/data/.hf_cache" os.makedirs(CHUNK_FOLDER, exist_ok=True) os.makedirs(TRAIN_FOLDER, exist_ok=True) os.makedirs(RAG_FOLDER, exist_ok=True) os.makedirs(CACHE_DIR, exist_ok=True) # ✅ Health check sunucusu app = FastAPI() @app.get("/") def health(): return JSONResponse(content={"status": "ok"}) def run_health_server(): uvicorn.run(app, host="0.0.0.0", port=7860) threading.Thread(target=run_health_server, daemon=True).start() # 🕒 Zamanlı log fonksiyonu def log(message): timestamp = datetime.now().strftime("%H:%M:%S") print(f"[{timestamp}] {message}") os.sys.stdout.flush() # === Tokenizer === os.environ["HF_HOME"] = CACHE_DIR log(f"🔁 Tokenizer yükleniyor: {MODEL_NAME}") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False, cache_dir=CACHE_DIR) if tokenizer.pad_token is None: log("ℹ️ pad_token tanımlı değil, eos_token atanıyor.") tokenizer.pad_token = tokenizer.eos_token config = AutoConfig.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR) MAX_LEN = getattr(config, "max_position_embeddings", 2048) # === Hugging Face API === api = HfApi() files = api.list_repo_files(repo_id=SOURCE_DATASET_ID, repo_type="dataset", token=HF_TOKEN) csv_files = sorted([f for f in files if f.endswith(".csv")]) selected_files = csv_files[START_CHUNK_NUMBER:START_CHUNK_NUMBER + PROCESS_CHUNK_COUNT] buffer_counter_train = 0 buffer_counter_rag = 0 def tokenize(example): # ✅ Mistral-7B-Instruct formatına uygun prompt prompt = f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['output']}" tokenized = tokenizer(prompt, truncation=True, padding="max_length", max_length=MAX_LEN) tokenized["labels"] = [ -100 if token_id == tokenizer.pad_token_id else token_id for token_id in tokenized["input_ids"] ] return tokenized def upload_if_ready(folder_path, target_repo): if os.listdir(folder_path): log(f"⬆️ BUFFER doldu. Hugging Face'e yükleniyor: {target_repo}") create_repo(target_repo, repo_type="dataset", token=HF_TOKEN, exist_ok=True) upload_folder(repo_id=target_repo, folder_path=folder_path, repo_type="dataset", token=HF_TOKEN) log("🧹 Upload sonrası klasör temizleniyor...") for f in os.listdir(folder_path): os.remove(os.path.join(folder_path, f)) return 0 return 0 for idx, filename in enumerate(selected_files): log(f"\n📄 {idx+1}/{len(selected_files)} → {filename} işleniyor...") try: local_path = os.path.join(CHUNK_FOLDER, os.path.basename(filename)) hf_hub_download( repo_id=SOURCE_DATASET_ID, filename=filename, local_dir=CHUNK_FOLDER, token=HF_TOKEN, repo_type="dataset" ) df = pd.read_csv(local_path).dropna() df = df[df["question"].str.strip().astype(bool) & df["answer"].str.strip().astype(bool)] df = df.rename(columns={"question": "instruction", "answer": "output"}) log(f"✅ Geçerli satır sayısı: {len(df)}") if GENERATE_RAG_DATA: rag_dataset = Dataset.from_pandas(df[["instruction", "output"]]) rag_path = os.path.join(RAG_FOLDER, filename.replace(".csv", ".parquet")) rag_dataset.to_parquet(rag_path, compression="brotli") log(f"📦 RAG parquet kaydedildi: {rag_path}") buffer_counter_rag += 1 if buffer_counter_rag >= BUFFER_SIZE: buffer_counter_rag = upload_if_ready(RAG_FOLDER, RAG_TARGET_DATASET_ID) if GENERATE_TRAIN_DATA: train_dataset = Dataset.from_pandas(df[["instruction", "output"]]) tokenized_dataset = train_dataset.map(tokenize) parquet_path = os.path.join(TRAIN_FOLDER, filename.replace(".csv", ".parquet")) tokenized_dataset.to_parquet(parquet_path, compression="snappy") log(f"🎯 Tokenized parquet kaydedildi: {parquet_path}") buffer_counter_train += 1 if buffer_counter_train >= BUFFER_SIZE: buffer_counter_train = upload_if_ready(TRAIN_FOLDER, TRAIN_TARGET_DATASET_ID) except Exception as e: log(f"❌ Hata oluştu: {filename} → {e}") traceback.print_exc() continue if GENERATE_TRAIN_DATA: buffer_counter_train = upload_if_ready(TRAIN_FOLDER, TRAIN_TARGET_DATASET_ID) if GENERATE_RAG_DATA: buffer_counter_rag = upload_if_ready(RAG_FOLDER, RAG_TARGET_DATASET_ID) log("✅ Tüm işlemler tamamlandı. Servis bekleme modunda...") while True: time.sleep(60)