Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import torch | |
import spacy | |
# Load models | |
model = GPT2LMHeadModel.from_pretrained("./") | |
tokenizer = GPT2Tokenizer.from_pretrained("./") | |
tokenizer.pad_token = tokenizer.eos_token | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
import spacy.cli | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
def summarize_description(text): | |
doc = nlp(text) | |
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "ADJ"]] | |
return " ".join(keywords[:12]) | |
def generate_slogans(brand, description, industry, tone="playful", num=5, liked_slogan=None): | |
processed_desc = summarize_description(description) | |
if liked_slogan: | |
prompt1 = ( | |
f"Create {industry} brand slogans similar to: '{liked_slogan}'\n" | |
f"Brand: {brand}\n" | |
f"Key Attributes: {processed_desc}\n" | |
"Slogan:" | |
) | |
prompt2 = ( | |
f"Generate slogans in the style of: '{liked_slogan}'\n" | |
f"For: {brand}\n" | |
f"Details: {processed_desc}\n" | |
"Slogan:" | |
) | |
else: | |
prompt1 = ( | |
f"Create a {industry} brand slogan that's {tone} and unique.\n" | |
f"Brand: {brand}\n" | |
f"Attributes: {processed_desc}\n" | |
"Slogan:" | |
) | |
prompt2 = ( | |
f"Write {tone} marketing slogans for this {industry} brand:\n" | |
f"Name: {brand}\n" | |
f"About: {processed_desc}\n" | |
"Slogan:" | |
) | |
tone_presets = { | |
"playful": {"temperature": 0.95, "top_p": 0.95, "repetition_penalty": 1.2}, | |
"bold": {"temperature": 0.8, "top_p": 0.9, "repetition_penalty": 1.45}, | |
"minimalist": {"temperature": 0.6, "top_p": 0.8, "repetition_penalty": 1.5}, | |
"luxury": {"temperature": 0.7, "top_p": 0.85, "repetition_penalty": 1.35}, | |
"classic": {"temperature": 0.7, "top_p": 0.9, "repetition_penalty": 1.25} | |
} | |
gen_params = { | |
**tone_presets[tone], | |
"max_new_tokens": 25, | |
"num_return_sequences": num, | |
"do_sample": True, | |
"pad_token_id": tokenizer.eos_token_id | |
} | |
# Generate from both prompts | |
outputs1 = model.generate(**tokenizer(prompt1, return_tensors="pt"), **gen_params) | |
outputs2 = model.generate(**tokenizer(prompt2, return_tensors="pt"), **gen_params) | |
slogans = [] | |
for outputs in [outputs1, outputs2]: | |
for output in outputs: | |
raw = tokenizer.decode(output, skip_special_tokens=True) | |
clean = raw.split("Slogan:")[-1].strip() | |
clean = clean.split("\n")[0].replace('"', '').replace('(', '').split(".")[0].strip() | |
if len(clean) > 4 and clean not in slogans: | |
slogans.append(clean) | |
return {"slogans": slogans[:num * 2]} | |
# Gradio interface | |
inputs = [ | |
gr.Textbox(label="Brand"), | |
gr.Textbox(label="Description"), | |
gr.Textbox(label="Industry"), | |
gr.Dropdown(["playful", "bold", "minimalist", "luxury", "classic"], label="Tone", value="playful"), | |
gr.Slider(1, 10, step=1, value=5, label="Number of Slogans"), | |
gr.Textbox(label="Generate like this slogan (optional)", value=None) | |
] | |
outputs = gr.JSON(label="Generated Slogans") | |
interface = gr.Interface( | |
fn=generate_slogans, | |
inputs=inputs, | |
outputs=outputs, | |
title="Slogan Generator API", | |
flagging_mode="never" | |
# allow_flagging="never" | |
) | |
# Launch with API endpoint | |
interface.launch(show_api=True) | |