gemma-3-270m / app.py
Utiric's picture
Update app.py
b14c8d8 verified
import os
import time
import threading
import torch
import gradio as gr
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
MODEL_REPO = "daniel-dona/gemma-3-270m-it"
LOCAL_DIR = os.path.join(os.getcwd(), "local_model")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
os.environ.setdefault("OMP_NUM_THREADS", str(os.cpu_count() or 1))
os.environ.setdefault("MKL_NUM_THREADS", os.environ["OMP_NUM_THREADS"])
os.environ.setdefault("OMP_PROC_BIND", "TRUE")
torch.set_num_threads(int(os.environ["OMP_NUM_THREADS"]))
torch.set_num_interop_threads(1)
torch.set_float32_matmul_precision("high")
def ensure_local_model(repo_id: str, local_dir: str, tries: int = 3, sleep_s: float = 3.0) -> str:
os.makedirs(local_dir, exist_ok=True)
for i in range(tries):
try:
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
local_dir_use_symlinks=False,
resume_download=True,
allow_patterns=["*.json", "*.model", "*.safetensors", "*.bin", "*.txt", "*.py"]
)
return local_dir
except Exception:
if i == tries - 1:
raise
time.sleep(sleep_s * (2 ** i))
return local_dir
model_path = ensure_local_model(MODEL_REPO, LOCAL_DIR)
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
local_files_only=True,
torch_dtype=torch.float32,
device_map=None
)
model.eval()
def build_prompt(message, history, system_message, max_ctx_tokens=1024):
msgs = [{"role": "system", "content": system_message}]
for u, a in history:
if u:
msgs.append({"role": "user", "content": u})
if a:
msgs.append({"role": "assistant", "content": a})
msgs.append({"role": "user", "content": message})
while True:
chat_template = """{% for m in messages %}
{{ m['role'] }}: {{ m['content'] }}
{% endfor %}
Assistant:"""
text = tokenizer.apply_chat_template(
msgs,
chat_template=chat_template,
tokenize=False,
add_generation_prompt=True
)
if len(tokenizer(text, add_special_tokens=False).input_ids) <= max_ctx_tokens:
return text
for i in range(1, len(msgs)):
if msgs[i]["role"] != "system":
del msgs[i:i+2]
break
def respond_stream(message, history, system_message, max_tokens, temperature, top_p):
text = build_prompt(message, history, system_message)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
do_sample = bool(temperature and temperature > 0.0)
gen_kwargs = dict(
max_new_tokens=max_tokens,
do_sample=do_sample,
top_p=top_p,
temperature=temperature if do_sample else None,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
try:
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
except TypeError:
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
thread = threading.Thread(
target=model.generate,
kwargs={**inputs, **{k: v for k, v in gen_kwargs.items() if v is not None}, "streamer": streamer}
)
partial_text = ""
token_count = 0
start_time = None
with torch.inference_mode():
thread.start()
try:
for chunk in streamer:
if start_time is None:
start_time = time.time()
partial_text += chunk
token_count += 1
yield partial_text
finally:
thread.join()
end_time = time.time() if start_time is not None else time.time()
duration = max(1e-6, end_time - start_time) if start_time else 0.0
tps = (token_count / duration) if duration > 0 else 0.0
yield partial_text + f"\n\n⚡ Hız: {tps:.2f} token/sn"
demo = gr.ChatInterface(
respond_stream,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
gr.Slider(minimum=0.0, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
]
)
if __name__ == "__main__":
with torch.inference_mode():
_ = model.generate(
**tokenizer(["Hi"], return_tensors="pt").to(model.device),
max_new_tokens=1, do_sample=False, use_cache=True
)
demo.queue(max_size=32).launch()