Spaces:
Sleeping
Sleeping
import os | |
import time | |
import threading | |
import torch | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
MODEL_REPO = "daniel-dona/gemma-3-270m-it" | |
LOCAL_DIR = os.path.join(os.getcwd(), "local_model") | |
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") | |
os.environ.setdefault("OMP_NUM_THREADS", str(os.cpu_count() or 1)) | |
os.environ.setdefault("MKL_NUM_THREADS", os.environ["OMP_NUM_THREADS"]) | |
os.environ.setdefault("OMP_PROC_BIND", "TRUE") | |
torch.set_num_threads(int(os.environ["OMP_NUM_THREADS"])) | |
torch.set_num_interop_threads(1) | |
torch.set_float32_matmul_precision("high") | |
def ensure_local_model(repo_id: str, local_dir: str, tries: int = 3, sleep_s: float = 3.0) -> str: | |
os.makedirs(local_dir, exist_ok=True) | |
for i in range(tries): | |
try: | |
snapshot_download( | |
repo_id=repo_id, | |
local_dir=local_dir, | |
local_dir_use_symlinks=False, | |
resume_download=True, | |
allow_patterns=["*.json", "*.model", "*.safetensors", "*.bin", "*.txt", "*.py"] | |
) | |
return local_dir | |
except Exception: | |
if i == tries - 1: | |
raise | |
time.sleep(sleep_s * (2 ** i)) | |
return local_dir | |
model_path = ensure_local_model(MODEL_REPO, LOCAL_DIR) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
local_files_only=True, | |
torch_dtype=torch.float32, | |
device_map=None | |
) | |
model.eval() | |
def build_prompt(message, history, system_message, max_ctx_tokens=1024): | |
msgs = [{"role": "system", "content": system_message}] | |
for u, a in history: | |
if u: | |
msgs.append({"role": "user", "content": u}) | |
if a: | |
msgs.append({"role": "assistant", "content": a}) | |
msgs.append({"role": "user", "content": message}) | |
while True: | |
chat_template = """{% for m in messages %} | |
{{ m['role'] }}: {{ m['content'] }} | |
{% endfor %} | |
Assistant:""" | |
text = tokenizer.apply_chat_template( | |
msgs, | |
chat_template=chat_template, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
if len(tokenizer(text, add_special_tokens=False).input_ids) <= max_ctx_tokens: | |
return text | |
for i in range(1, len(msgs)): | |
if msgs[i]["role"] != "system": | |
del msgs[i:i+2] | |
break | |
def respond_stream(message, history, system_message, max_tokens, temperature, top_p): | |
text = build_prompt(message, history, system_message) | |
inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
do_sample = bool(temperature and temperature > 0.0) | |
gen_kwargs = dict( | |
max_new_tokens=max_tokens, | |
do_sample=do_sample, | |
top_p=top_p, | |
temperature=temperature if do_sample else None, | |
use_cache=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
try: | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) | |
except TypeError: | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
thread = threading.Thread( | |
target=model.generate, | |
kwargs={**inputs, **{k: v for k, v in gen_kwargs.items() if v is not None}, "streamer": streamer} | |
) | |
partial_text = "" | |
token_count = 0 | |
start_time = None | |
with torch.inference_mode(): | |
thread.start() | |
try: | |
for chunk in streamer: | |
if start_time is None: | |
start_time = time.time() | |
partial_text += chunk | |
token_count += 1 | |
yield partial_text | |
finally: | |
thread.join() | |
end_time = time.time() if start_time is not None else time.time() | |
duration = max(1e-6, end_time - start_time) if start_time else 0.0 | |
tps = (token_count / duration) if duration > 0 else 0.0 | |
yield partial_text + f"\n\n⚡ Hız: {tps:.2f} token/sn" | |
demo = gr.ChatInterface( | |
respond_stream, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.0, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
] | |
) | |
if __name__ == "__main__": | |
with torch.inference_mode(): | |
_ = model.generate( | |
**tokenizer(["Hi"], return_tensors="pt").to(model.device), | |
max_new_tokens=1, do_sample=False, use_cache=True | |
) | |
demo.queue(max_size=32).launch() | |