File size: 13,131 Bytes
538765f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
import json
from datetime import datetime
import os
import tempfile

# Import the resume agent (assuming the previous code is saved as resume_agent.py)
from resume_agent import ResumeAgent, get_sample_resume, get_sample_job_description

class GradioResumeApp:
    """Gradio interface for the Resume Optimization Agent"""
    
    def __init__(self):
        self.agent = ResumeAgent()
        self.sample_resume = get_sample_resume()
        self.sample_job_desc = get_sample_job_description()
    
    def process_resume(self, resume_file, resume_text, job_file, job_text, api_key):
        """Process resume optimization request"""
        
        # Validate API key
        if not api_key or api_key.strip() == "":
            return self._create_error_output("❌ Please provide a valid Gemini API key")
        
        # Set API key
        import google.generativeai as genai
        try:
            genai.configure(api_key=api_key.strip())
        except Exception as e:
            return self._create_error_output(f"❌ Invalid API key: {str(e)}")
        
        # Get resume content
        resume_content = self._get_content(resume_file, resume_text, self.sample_resume, "resume")
        if not resume_content:
            return self._create_error_output("❌ No resume content provided")
        
        # Get job description content
        job_content = self._get_content(job_file, job_text, self.sample_job_desc, "job description")
        
        try:
            # Process optimization
            results = self.agent.optimize_resume(resume_content, job_content)
            
            # Format results for display
            return self._format_results(results)
            
        except Exception as e:
            return self._create_error_output(f"❌ Error during optimization: {str(e)}")
    
    def _get_content(self, file, text, sample, content_type):
        """Extract content from file or text input"""
        if file is not None:
            try:
                content = file.decode('utf-8') if isinstance(file, bytes) else file.read()
                return content
            except Exception as e:
                print(f"Error reading {content_type} file: {str(e)}")
        
        if text and text.strip():
            return text.strip()
        
        return sample
    
    def _create_error_output(self, error_message):
        """Create error output tuple"""
        return (
            error_message,  # summary
            "",  # experience_analysis
            "",  # keyword_analysis
            "",  # design_suggestions
            "",  # editing_suggestions
            ""   # full_results
        )
    
    def _format_results(self, results):
        """Format optimization results for Gradio display"""
        
        # New Summary
        new_summary = results.get("new_summary", "No summary generated")
        
        # Experience Analysis
        experience_analysis = ""
        if "experience_matching" in results:
            exp_data = results["experience_matching"]
            if isinstance(exp_data, dict) and "ranked_experiences" in exp_data:
                experience_analysis = "πŸ“Š **Experience Relevance Analysis:**\n\n"
                for i, exp in enumerate(exp_data["ranked_experiences"][:3], 1):
                    if isinstance(exp, dict):
                        score = exp.get("relevance_score", "N/A")
                        points = exp.get("matching_points", [])
                        experience_analysis += f"**Experience {i}:** Score {score}/10\n"
                        experience_analysis += f"Key matches: {', '.join(points[:3])}\n\n"
            else:
                experience_analysis = "Experience analysis completed"
        
        # Keyword Analysis
        keyword_analysis = ""
        if "keyword_optimization" in results:
            kw_data = results["keyword_optimization"]
            if isinstance(kw_data, dict):
                ats_score = kw_data.get("ats_score", "N/A")
                missing_kw = kw_data.get("missing_keywords", [])
                keyword_analysis = f"🎯 **ATS Optimization Score:** {ats_score}/100\n\n"
                if missing_kw:
                    keyword_analysis += f"**Missing Keywords:** {', '.join(missing_kw[:10])}\n\n"
                
                recommendations = kw_data.get("recommendations", [])
                if recommendations:
                    keyword_analysis += "**Recommendations:**\n"
                    for rec in recommendations[:3]:
                        keyword_analysis += f"β€’ {rec}\n"
            else:
                keyword_analysis = "Keyword optimization completed"
        
        # Design Suggestions
        design_suggestions = ""
        if "design_suggestions" in results:
            design_data = results["design_suggestions"]
            if isinstance(design_data, dict):
                template = design_data.get("recommended_template", "Standard")
                layout_tips = design_data.get("layout_suggestions", [])
                design_suggestions = f"🎨 **Recommended Template:** {template}\n\n"
                if layout_tips:
                    design_suggestions += "**Layout Suggestions:**\n"
                    for tip in layout_tips[:5]:
                        design_suggestions += f"β€’ {tip}\n"
            else:
                design_suggestions = "Design suggestions generated"
        
        # Editing Suggestions
        editing_suggestions = ""
        if "editing_suggestions" in results:
            edit_data = results["editing_suggestions"]
            if isinstance(edit_data, dict):
                score = edit_data.get("overall_score", "N/A")
                feedback = edit_data.get("summary_feedback", "")
                editing_suggestions = f"✏️ **Overall Quality Score:** {score}/100\n\n"
                if feedback:
                    editing_suggestions += f"**Feedback:** {feedback}\n\n"
                
                grammar_errors = edit_data.get("grammar_errors", [])
                if grammar_errors:
                    editing_suggestions += "**Grammar Improvements:**\n"
                    for error in grammar_errors[:3]:
                        if isinstance(error, dict):
                            original = error.get("original", "")
                            corrected = error.get("corrected", "")
                            editing_suggestions += f"β€’ '{original}' β†’ '{corrected}'\n"
            else:
                editing_suggestions = "Editing analysis completed"
        
        # Full Results (JSON)
        full_results = json.dumps(results, indent=2, default=str)
        
        return (
            new_summary,
            experience_analysis,
            keyword_analysis,
            design_suggestions,
            editing_suggestions,
            full_results
        )
    
    def create_interface(self):
        """Create and return Gradio interface"""
        
        with gr.Blocks(
            title="AI Resume Optimizer",
            theme=gr.themes.Soft(),
            css="""
            .gradio-container {
                max-width: 1200px !important;
            }
            .main-header {
                text-align: center;
                margin-bottom: 30px;
            }
            """
        ) as interface:
            
            gr.HTML("""
            <div class="main-header">
                <h1>πŸš€ AI Resume Optimization Agent</h1>
                <p>Upload your resume and job description to get AI-powered optimization suggestions</p>
            </div>
            """)
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.HTML("<h2>πŸ“„ Input</h2>")
                    
                    # API Key input
                    api_key = gr.Textbox(
                        label="πŸ”‘ Gemini API Key",
                        placeholder="Enter your Gemini API key here...",
                        type="password",
                        info="Get your free API key from Google AI Studio"
                    )
                    
                    # Resume input
                    with gr.Tab("Resume Upload"):
                        resume_file = gr.File(
                            label="Upload Resume (PDF/TXT/DOCX)",
                            file_types=[".pdf", ".txt", ".docx"]
                        )
                    
                    with gr.Tab("Resume Text"):
                        resume_text = gr.Textbox(
                            label="Paste Resume Text",
                            placeholder="Paste your resume content here...",
                            lines=8,
                            value=self.sample_resume
                        )
                    
                    # Job description input
                    with gr.Tab("Job Description Upload"):
                        job_file = gr.File(
                            label="Upload Job Description",
                            file_types=[".pdf", ".txt", ".docx"]
                        )
                    
                    with gr.Tab("Job Description Text"):
                        job_text = gr.Textbox(
                            label="Paste Job Description",
                            placeholder="Paste job description here...",
                            lines=6,
                            value=self.sample_job_desc
                        )
                    
                    # Optimize button
                    optimize_btn = gr.Button(
                        "πŸš€ Optimize Resume",
                        variant="primary",
                        size="lg"
                    )
                
                with gr.Column(scale=1):
                    gr.HTML("<h2>πŸ“Š Results</h2>")
                    
                    with gr.Tab("✨ New Summary"):
                        summary_output = gr.Textbox(
                            label="Optimized Professional Summary",
                            lines=4,
                            interactive=False
                        )
                    
                    with gr.Tab("πŸ“ˆ Experience Analysis"):
                        experience_output = gr.Markdown(
                            label="Experience Relevance Analysis"
                        )
                    
                    with gr.Tab("🎯 Keywords & ATS"):
                        keyword_output = gr.Markdown(
                            label="Keyword Optimization & ATS Score"
                        )
                    
                    with gr.Tab("🎨 Design Tips"):
                        design_output = gr.Markdown(
                            label="Design & Formatting Suggestions"
                        )
                    
                    with gr.Tab("✏️ Editing Tips"):
                        editing_output = gr.Markdown(
                            label="Grammar & Content Improvements"
                        )
                    
                    with gr.Tab("πŸ“‹ Full Report"):
                        full_output = gr.Code(
                            label="Complete Analysis (JSON)",
                            language="json"
                        )
            
            # Event handlers
            optimize_btn.click(
                fn=self.process_resume,
                inputs=[resume_file, resume_text, job_file, job_text, api_key],
                outputs=[
                    summary_output,
                    experience_output,
                    keyword_output,
                    design_output,
                    editing_output,
                    full_output
                ]
            )
            
            # Example section
            with gr.Row():
                gr.HTML("""
                <div style="margin-top: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
                    <h3>πŸ’‘ Quick Start Guide:</h3>
                    <ol>
                        <li>Get your free Gemini API key from <a href="https://makersuite.google.com/app/apikey" target="_blank">Google AI Studio</a></li>
                        <li>Upload your resume or use the sample provided</li>
                        <li>Add a job description you're targeting (optional)</li>
                        <li>Click "Optimize Resume" to get AI-powered suggestions</li>
                    </ol>
                    <p><strong>Features:</strong> Professional Summary Generation β€’ Experience Matching β€’ ATS Optimization β€’ Design Suggestions β€’ Grammar & Style Improvements</p>
                </div>
                """)
        
        return interface

def main():
    """Launch the Gradio app"""
    app = GradioResumeApp()
    interface = app.create_interface()
    
    # Launch the app
    interface.launch(
        server_name="0.0.0.0",  # Allow external access
        server_port=7860,
        share=True,  # Create public link
        debug=True
    )

if __name__ == "__main__":
    main()