File size: 17,062 Bytes
f3d6510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import json
import re
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass
from abc import ABC, abstractmethod
import google.generativeai as genai
from datetime import datetime

# Configure Gemini API
genai.configure(api_key="YOUR_GEMINI_API_KEY")

@dataclass
class ResumeData:
    """Data structure to hold resume information"""
    personal_info: Dict
    summary: str
    experiences: List[Dict]
    skills: List[str]
    education: List[Dict]
    raw_text: str

@dataclass
class JobDescription:
    """Data structure for job descriptions"""
    title: str
    company: str
    description: str
    requirements: List[str]
    keywords: List[str]

class Agent(ABC):
    """Base agent class"""
    
    def __init__(self, model_name: str = "gemini-1.5-flash"):
        self.model = genai.GenerativeModel(model_name)
    
    @abstractmethod
    def execute(self, *args, **kwargs):
        pass
    
    def generate_response(self, prompt: str) -> str:
        """Generate response using Gemini"""
        try:
            response = self.model.generate_content(prompt)
            return response.text
        except Exception as e:
            return f"Error generating response: {str(e)}"

class SummaryAgent(Agent):
    """Agent responsible for creating compelling professional summaries"""
    
    def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> str:
        context = f"""
        Personal Info: {resume_data.personal_info}
        Experience: {resume_data.experiences}
        Skills: {resume_data.skills}
        Education: {resume_data.education}
        """
        
        job_context = ""
        if job_desc:
            job_context = f"""
            Target Job: {job_desc.title} at {job_desc.company}
            Job Requirements: {job_desc.requirements}
            """
        
        prompt = f"""
        Create a compelling professional summary (2-3 sentences) based on this resume information:
        {context}
        
        {job_context}
        
        Guidelines:
        - Highlight unique value proposition
        - Use action-oriented language
        - Focus on achievements and impact
        - Keep it concise and engaging
        - If job description provided, align with role requirements
        
        Return only the professional summary text.
        """
        
        return self.generate_response(prompt)

class ExperienceMatchingAgent(Agent):
    """Agent for matching experiences to job descriptions"""
    
    def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> List[Dict]:
        experiences_text = json.dumps(resume_data.experiences, indent=2)
        
        prompt = f"""
        Analyze these work experiences and rank them by relevance to the target job:
        
        EXPERIENCES:
        {experiences_text}
        
        TARGET JOB:
        Title: {job_desc.title}
        Company: {job_desc.company}
        Description: {job_desc.description}
        Requirements: {job_desc.requirements}
        
        For each experience, provide:
        1. Relevance score (1-10)
        2. Key matching points
        3. Suggested improvements for better alignment
        4. Recommended order for resume
        
        Return as JSON format:
        {{
            "ranked_experiences": [
                {{
                    "original_experience": {{...}},
                    "relevance_score": 8,
                    "matching_points": ["point1", "point2"],
                    "suggested_improvements": ["improvement1", "improvement2"],
                    "recommended_position": 1
                }}
            ]
        }}
        """
        
        response = self.generate_response(prompt)
        try:
            return json.loads(response)
        except json.JSONDecodeError:
            return {"error": "Failed to parse experience matching results"}

class KeywordOptimizationAgent(Agent):
    """Agent for optimizing ATS keywords"""
    
    def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> Dict:
        prompt = f"""
        Analyze the resume and job description to optimize ATS keywords:
        
        RESUME CONTENT:
        Summary: {resume_data.summary}
        Skills: {resume_data.skills}
        Experiences: {json.dumps(resume_data.experiences)}
        
        JOB DESCRIPTION:
        {job_desc.description}
        Requirements: {job_desc.requirements}
        
        Provide:
        1. Missing critical keywords from job description
        2. Keyword density analysis
        3. Suggested keyword placements
        4. Industry-specific terms to include
        5. ATS optimization score (1-100)
        
        Return as JSON:
        {{
            "missing_keywords": ["keyword1", "keyword2"],
            "current_keyword_density": {{"keyword": "frequency"}},
            "suggested_placements": [
                {{
                    "keyword": "Python",
                    "sections": ["skills", "experience"],
                    "context": "Add to technical skills section"
                }}
            ],
            "industry_terms": ["term1", "term2"],
            "ats_score": 75,
            "recommendations": ["rec1", "rec2"]
        }}
        """
        
        response = self.generate_response(prompt)
        try:
            return json.loads(response)
        except json.JSONDecodeError:
            return {"error": "Failed to parse keyword optimization results"}

class DesignAgent(Agent):
    """Agent for design and formatting suggestions"""
    
    def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> Dict:
        industry = job_desc.title.split()[0] if job_desc else "General"
        
        prompt = f"""
        Suggest design and formatting improvements for a {industry} professional's resume:
        
        CURRENT RESUME STRUCTURE:
        - Personal Info: {len(resume_data.personal_info)} fields
        - Experiences: {len(resume_data.experiences)} positions
        - Skills: {len(resume_data.skills)} skills listed
        - Education: {len(resume_data.education)} entries
        
        Consider:
        1. Industry standards for {industry}
        2. ATS-friendly formatting
        3. Visual hierarchy and readability
        4. Professional appearance
        5. Length optimization
        
        Return JSON with:
        {{
            "recommended_template": "template_name",
            "layout_suggestions": ["suggestion1", "suggestion2"],
            "formatting_rules": ["rule1", "rule2"],
            "color_scheme": "color_description",
            "typography": "font_recommendations",
            "sections_order": ["section1", "section2", "section3"],
            "design_tips": ["tip1", "tip2"]
        }}
        """
        
        response = self.generate_response(prompt)
        try:
            return json.loads(response)
        except json.JSONDecodeError:
            return {"error": "Failed to parse design suggestions"}

class EditingAgent(Agent):
    """Agent for grammar, punctuation, and content improvement"""
    
    def execute(self, text: str) -> Dict:
        prompt = f"""
        Analyze this resume text for improvements:
        
        TEXT TO REVIEW:
        {text}
        
        Check for:
        1. Grammar and punctuation errors
        2. Clarity and conciseness
        3. Action verb usage
        4. Quantifiable achievements
        5. Professional tone
        6. Consistency in formatting
        
        Return JSON:
        {{
            "grammar_errors": [
                {{
                    "original": "original text",
                    "corrected": "corrected text",
                    "explanation": "reason for change"
                }}
            ],
            "clarity_improvements": [
                {{
                    "original": "original text",
                    "improved": "improved text",
                    "reason": "why it's better"
                }}
            ],
            "action_verb_suggestions": ["verb1", "verb2"],
            "quantification_opportunities": ["opportunity1", "opportunity2"],
            "overall_score": 85,
            "summary_feedback": "Overall assessment"
        }}
        """
        
        response = self.generate_response(prompt)
        try:
            return json.loads(response)
        except json.JSONDecodeError:
            return {"error": "Failed to parse editing suggestions"}

class ResumeAgent:
    """Main orchestrating agent that coordinates all sub-agents"""
    
    def __init__(self):
        self.summary_agent = SummaryAgent()
        self.experience_agent = ExperienceMatchingAgent()
        self.keyword_agent = KeywordOptimizationAgent()
        self.design_agent = DesignAgent()
        self.editing_agent = EditingAgent()
    
    def parse_resume(self, resume_text: str) -> ResumeData:
        """Simple resume parsing - can be enhanced with proper NLP"""
        # This is a simplified parser - in production, you'd use more sophisticated parsing
        lines = resume_text.split('\n')
        
        # Extract basic sections (this is a simplified implementation)
        personal_info = {"name": "John Doe", "email": "john@email.com"}  # Placeholder
        summary = ""
        experiences = []
        skills = []
        education = []
        
        # Simple pattern matching (enhance as needed)
        current_section = None
        for line in lines:
            line = line.strip()
            if re.match(r'(summary|profile|objective)', line.lower()):
                current_section = 'summary'
            elif re.match(r'(experience|work|employment)', line.lower()):
                current_section = 'experience'
            elif re.match(r'(skills|technical)', line.lower()):
                current_section = 'skills'
            elif re.match(r'(education|academic)', line.lower()):
                current_section = 'education'
            elif line and current_section:
                if current_section == 'summary':
                    summary += line + " "
                elif current_section == 'skills':
                    skills.extend([skill.strip() for skill in line.split(',')])
        
        return ResumeData(
            personal_info=personal_info,
            summary=summary.strip(),
            experiences=experiences,
            skills=skills,
            education=education,
            raw_text=resume_text
        )
    
    def optimize_resume(self, resume_text: str, job_description: Optional[str] = None) -> Dict:
        """Main method to optimize resume using all agents"""
        
        # Parse resume
        resume_data = self.parse_resume(resume_text)
        
        # Parse job description if provided
        job_desc = None
        if job_description:
            job_desc = JobDescription(
                title="Target Position",
                company="Target Company",
                description=job_description,
                requirements=[req.strip() for req in job_description.split('.') if req.strip()],
                keywords=[]
            )
        
        results = {
            "timestamp": datetime.now().isoformat(),
            "original_resume": resume_data.__dict__,
        }
        
        # Generate new summary
        print("πŸ”„ Generating compelling summary...")
        results["new_summary"] = self.summary_agent.execute(resume_data, job_desc)
        
        # Match experiences to job
        if job_desc:
            print("πŸ”„ Analyzing experience relevance...")
            results["experience_matching"] = self.experience_agent.execute(resume_data, job_desc)
            
            print("πŸ”„ Optimizing keywords for ATS...")
            results["keyword_optimization"] = self.keyword_agent.execute(resume_data, job_desc)
        
        # Design suggestions
        print("πŸ”„ Generating design recommendations...")
        results["design_suggestions"] = self.design_agent.execute(resume_data, job_desc)
        
        # Edit and improve
        print("πŸ”„ Analyzing content for improvements...")
        results["editing_suggestions"] = self.editing_agent.execute(resume_text)
        
        return results

# File handling utilities
def read_file(file_path: str) -> str:
    """Read content from a file"""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return file.read()
    except FileNotFoundError:
        print(f"❌ File not found: {file_path}")
        return ""
    except Exception as e:
        print(f"❌ Error reading file: {str(e)}")
        return ""

def get_sample_resume() -> str:
    """Return sample resume text"""
    return """
    John Doe
    Software Engineer
    john.doe@email.com
    (555) 123-4567
    
    SUMMARY
    Experienced software developer with 5 years in web development and system design.
    
    EXPERIENCE
    Software Developer at TechCorp (2019-2024)
    - Developed web applications using Python and JavaScript
    - Worked with databases and APIs
    - Collaborated with team members on agile projects
    - Maintained code quality and performed code reviews
    
    Senior Developer Intern at StartupXYZ (2018-2019)
    - Built responsive web interfaces using React
    - Integrated third-party APIs and services
    - Participated in daily standups and sprint planning
    
    SKILLS
    Python, JavaScript, React, SQL, Git, Docker, AWS, REST APIs
    
    EDUCATION
    BS Computer Science, University XYZ (2019)
    GPA: 3.7/4.0
    """

def get_sample_job_description() -> str:
    """Return sample job description"""
    return """
    Senior Python Developer position at InnovaTech
    
    We are looking for an experienced Python developer with expertise in Django, 
    REST APIs, database optimization, and cloud technologies. The ideal candidate 
    should have 3+ years of experience, strong problem-solving skills, and 
    experience with AWS or Azure.
    
    Requirements:
    - 3+ years of Python development experience
    - Strong knowledge of Django framework
    - Experience with REST API development
    - Database design and optimization skills
    - Cloud platform experience (AWS/Azure)
    - Git version control
    - Agile development methodology
    - Strong communication skills
    """

# Example usage and testing
def main():
    """Main function with file upload capability"""
    
    print("πŸš€ AI Resume Optimization Agent")
    print("=" * 50)
    
    # Get resume content
    resume_file = input("πŸ“„ Enter resume file path (or press Enter for sample): ").strip()
    if resume_file and resume_file != "":
        resume_text = read_file(resume_file)
        if not resume_text:
            print("πŸ“„ Using sample resume instead...")
            resume_text = get_sample_resume()
    else:
        print("πŸ“„ Using sample resume...")
        resume_text = get_sample_resume()
    
    # Get job description
    job_file = input("πŸ’Ό Enter job description file path (or press Enter for sample): ").strip()
    if job_file and job_file != "":
        job_description = read_file(job_file)
        if not job_description:
            print("πŸ’Ό Using sample job description instead...")
            job_description = get_sample_job_description()
    else:
        print("πŸ’Ό Using sample job description...")
        job_description = get_sample_job_description()
    
    # Initialize the agent
    agent = ResumeAgent()
    
    print("\nπŸ”„ Starting Resume Optimization...")
    print("=" * 50)
    
    # Optimize resume
    results = agent.optimize_resume(resume_text, job_description)
    
    print("\nβœ… Optimization Complete!")
    print("=" * 50)
    
    # Display results
    print(f"\nπŸ“ NEW SUMMARY:")
    print(results.get("new_summary", ""))
    
    if "keyword_optimization" in results:
        keyword_data = results["keyword_optimization"]
        if isinstance(keyword_data, dict) and "ats_score" in keyword_data:
            print(f"\n🎯 ATS SCORE: {keyword_data['ats_score']}/100")
    
    if "design_suggestions" in results:
        design_data = results["design_suggestions"]
        if isinstance(design_data, dict) and "recommended_template" in design_data:
            print(f"\n🎨 RECOMMENDED TEMPLATE: {design_data['recommended_template']}")
    
    print(f"\nπŸ“Š ANALYSIS COMPLETE")
    print(f"Full results saved with timestamp: {results['timestamp']}")
    
    # Save results to file
    output_file = f"resume_optimization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
    try:
        with open(output_file, 'w', encoding='utf-8') as f:
            json.dump(results, f, indent=2, default=str)
        print(f"πŸ’Ύ Results saved to: {output_file}")
    except Exception as e:
        print(f"❌ Error saving results: {str(e)}")
    
    return results

if __name__ == "__main__":
    # Note: Replace "YOUR_GEMINI_API_KEY" with your actual API key
    main()