import os import time import gc import threading from datetime import datetime import gradio as gr import torch from transformers import pipeline, TextIteratorStreamer import spaces # Import spaces early to enable ZeroGPU support # ------------------------------ # Global Cancellation Event # ------------------------------ cancel_event = threading.Event() # ------------------------------ # Qwen3 Model Definitions # ------------------------------ MODELS = { "Qwen3-8B": {"repo_id": "Qwen/Qwen3-8B", "description": "Qwen3-8B - Largest model with highest capabilities"}, "Qwen3-4B": {"repo_id": "Qwen/Qwen3-4B", "description": "Qwen3-4B - Good balance of performance and efficiency"}, "Qwen3-1.7B": {"repo_id": "Qwen/Qwen3-1.7B", "description": "Qwen3-1.7B - Smaller model for faster responses"}, "Qwen3-0.6B": {"repo_id": "Qwen/Qwen3-0.6B", "description": "Qwen3-0.6B - Ultra-lightweight model"} } # Global cache for pipelines to avoid re-loading. PIPELINES = {} def load_pipeline(model_name): """ Load and cache a transformers pipeline for text generation. Tries bfloat16, falls back to float16 or float32 if unsupported. """ global PIPELINES if model_name in PIPELINES: return PIPELINES[model_name] repo = MODELS[model_name]["repo_id"] for dtype in (torch.bfloat16, torch.float16, torch.float32): try: pipe = pipeline( task="text-generation", model=repo, tokenizer=repo, trust_remote_code=True, torch_dtype=dtype, device_map="auto" ) PIPELINES[model_name] = pipe return pipe except Exception: continue # Final fallback pipe = pipeline( task="text-generation", model=repo, tokenizer=repo, trust_remote_code=True, device_map="auto" ) PIPELINES[model_name] = pipe return pipe def format_conversation(history, system_prompt): """ Flatten chat history and system prompt into a single string. """ prompt = system_prompt.strip() + "\n" for user_msg, assistant_msg in history: prompt += "User: " + user_msg.strip() + "\n" if assistant_msg: # might be None or empty prompt += "Assistant: " + assistant_msg.strip() + "\n" prompt += "Assistant: " return prompt def generate_response(user_input, history, system_prompt, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty): """ Generate a complete response (non-streaming). """ cancel_event.clear() full_history = history.copy() # Format conversation for the model conversation = format_conversation(full_history, system_prompt) try: pipe = load_pipeline(model_name) output = pipe( conversation, max_new_tokens=max_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repeat_penalty, return_full_text=False )[0]["generated_text"] # Return the updated history history.append((user_input, output)) return history except Exception as e: history.append((user_input, f"Error: {e}")) return history finally: gc.collect() def cancel_generation(): cancel_event.set() return 'Generation cancelled.' def get_default_system_prompt(): today = datetime.now().strftime('%Y-%m-%d') return f"""You are Qwen3, a helpful and friendly AI assistant created by Alibaba Cloud. Today is {today}. Be concise, accurate, and helpful in your responses.""" # CSS for improved visual style css = """ .gradio-container { background-color: #f5f7fb !important; } .qwen-header { background: linear-gradient(90deg, #0099FF, #0066CC); padding: 20px; border-radius: 10px; margin-bottom: 20px; text-align: center; color: white; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .qwen-container { border-radius: 10px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); background: white; padding: 20px; margin-bottom: 20px; } .controls-container { background: #f0f4fa; border-radius: 10px; padding: 15px; margin-bottom: 15px; } .model-select { border: 2px solid #0099FF !important; border-radius: 8px !important; } .button-primary { background-color: #0099FF !important; color: white !important; } .button-secondary { background-color: #6c757d !important; color: white !important; } .footer { text-align: center; margin-top: 20px; font-size: 0.8em; color: #666; } """ # Function to get just the model name from the dropdown selection def get_model_name(full_selection): return full_selection.split(" - ")[0] # ------------------------------ # Gradio UI # ------------------------------ with gr.Blocks(title="Qwen3 Chat", css=css) as demo: gr.HTML("""
Interact with Alibaba Cloud's Qwen3 language models