Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1212 +1,35 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
from collections.abc import Iterator
|
| 8 |
-
from threading import Thread
|
| 9 |
-
import json
|
| 10 |
-
import requests
|
| 11 |
-
import cv2
|
| 12 |
-
import gradio as gr
|
| 13 |
-
import spaces
|
| 14 |
-
import torch
|
| 15 |
-
from loguru import logger
|
| 16 |
-
from PIL import Image
|
| 17 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
| 18 |
-
|
| 19 |
-
# CSV/TXT analysis
|
| 20 |
-
import pandas as pd
|
| 21 |
-
# PDF text extraction
|
| 22 |
-
import PyPDF2
|
| 23 |
-
|
| 24 |
-
##############################################################################
|
| 25 |
-
# Memory cleanup function
|
| 26 |
-
##############################################################################
|
| 27 |
-
def clear_cuda_cache():
|
| 28 |
-
"""Clear CUDA cache explicitly."""
|
| 29 |
-
if torch.cuda.is_available():
|
| 30 |
-
torch.cuda.empty_cache()
|
| 31 |
-
gc.collect()
|
| 32 |
-
|
| 33 |
-
##############################################################################
|
| 34 |
-
# SERPHouse API key from environment variable
|
| 35 |
-
##############################################################################
|
| 36 |
-
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
| 37 |
-
|
| 38 |
-
##############################################################################
|
| 39 |
-
# Simple keyword extraction function
|
| 40 |
-
##############################################################################
|
| 41 |
-
def extract_keywords(text: str, top_k: int = 5) -> str:
|
| 42 |
-
"""
|
| 43 |
-
Extract keywords from text
|
| 44 |
-
"""
|
| 45 |
-
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
|
| 46 |
-
tokens = text.split()
|
| 47 |
-
key_tokens = tokens[:top_k]
|
| 48 |
-
return " ".join(key_tokens)
|
| 49 |
-
|
| 50 |
-
##############################################################################
|
| 51 |
-
# SerpHouse Live endpoint call
|
| 52 |
-
##############################################################################
|
| 53 |
-
def do_web_search(query: str) -> str:
|
| 54 |
-
"""
|
| 55 |
-
Return top 20 'organic' results as JSON string
|
| 56 |
-
"""
|
| 57 |
-
try:
|
| 58 |
-
url = "https://api.serphouse.com/serp/live"
|
| 59 |
-
|
| 60 |
-
# 기본 GET 방식으로 파라미터 간소화하고 결과 수를 20개로 제한
|
| 61 |
-
params = {
|
| 62 |
-
"q": query,
|
| 63 |
-
"domain": "google.com",
|
| 64 |
-
"serp_type": "web", # Basic web search
|
| 65 |
-
"device": "desktop",
|
| 66 |
-
"lang": "en",
|
| 67 |
-
"num": "20" # Request max 20 results
|
| 68 |
-
}
|
| 69 |
-
|
| 70 |
-
headers = {
|
| 71 |
-
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
logger.info(f"SerpHouse API call... query: {query}")
|
| 75 |
-
logger.info(f"Request URL: {url} - params: {params}")
|
| 76 |
-
|
| 77 |
-
# GET request
|
| 78 |
-
response = requests.get(url, headers=headers, params=params, timeout=60)
|
| 79 |
-
response.raise_for_status()
|
| 80 |
-
|
| 81 |
-
logger.info(f"SerpHouse API response status: {response.status_code}")
|
| 82 |
-
data = response.json()
|
| 83 |
-
|
| 84 |
-
# Handle various response structures
|
| 85 |
-
results = data.get("results", {})
|
| 86 |
-
organic = None
|
| 87 |
-
|
| 88 |
-
# Possible response structure 1
|
| 89 |
-
if isinstance(results, dict) and "organic" in results:
|
| 90 |
-
organic = results["organic"]
|
| 91 |
-
|
| 92 |
-
# Possible response structure 2 (nested results)
|
| 93 |
-
elif isinstance(results, dict) and "results" in results:
|
| 94 |
-
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
| 95 |
-
organic = results["results"]["organic"]
|
| 96 |
-
|
| 97 |
-
# Possible response structure 3 (top-level organic)
|
| 98 |
-
elif "organic" in data:
|
| 99 |
-
organic = data["organic"]
|
| 100 |
-
|
| 101 |
-
if not organic:
|
| 102 |
-
logger.warning("No organic results found in response.")
|
| 103 |
-
logger.debug(f"Response structure: {list(data.keys())}")
|
| 104 |
-
if isinstance(results, dict):
|
| 105 |
-
logger.debug(f"results structure: {list(results.keys())}")
|
| 106 |
-
return "No web search results found or unexpected API response structure."
|
| 107 |
-
|
| 108 |
-
# Limit results and optimize context length
|
| 109 |
-
max_results = min(20, len(organic))
|
| 110 |
-
limited_organic = organic[:max_results]
|
| 111 |
-
|
| 112 |
-
# Format results for better readability
|
| 113 |
-
summary_lines = []
|
| 114 |
-
for idx, item in enumerate(limited_organic, start=1):
|
| 115 |
-
title = item.get("title", "No title")
|
| 116 |
-
link = item.get("link", "#")
|
| 117 |
-
snippet = item.get("snippet", "No description")
|
| 118 |
-
displayed_link = item.get("displayed_link", link)
|
| 119 |
-
|
| 120 |
-
# Markdown format
|
| 121 |
-
summary_lines.append(
|
| 122 |
-
f"### Result {idx}: {title}\n\n"
|
| 123 |
-
f"{snippet}\n\n"
|
| 124 |
-
f"**Source**: [{displayed_link}]({link})\n\n"
|
| 125 |
-
f"---\n"
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# Add simple instructions for model
|
| 129 |
-
instructions = """
|
| 130 |
-
# X-RAY Security Scanning Reference Results
|
| 131 |
-
Use this information to enhance your analysis.
|
| 132 |
-
"""
|
| 133 |
-
|
| 134 |
-
search_results = instructions + "\n".join(summary_lines)
|
| 135 |
-
logger.info(f"Processed {len(limited_organic)} search results")
|
| 136 |
-
return search_results
|
| 137 |
-
|
| 138 |
-
except Exception as e:
|
| 139 |
-
logger.error(f"Web search failed: {e}")
|
| 140 |
-
return f"Web search failed: {str(e)}"
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
##############################################################################
|
| 144 |
-
# Model/Processor loading
|
| 145 |
-
##############################################################################
|
| 146 |
-
MAX_CONTENT_CHARS = 2000
|
| 147 |
-
MAX_INPUT_LENGTH = 2096 # Max input token limit
|
| 148 |
-
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
| 149 |
-
|
| 150 |
-
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
| 151 |
-
model = Gemma3ForConditionalGeneration.from_pretrained(
|
| 152 |
-
model_id,
|
| 153 |
-
device_map="auto",
|
| 154 |
-
torch_dtype=torch.bfloat16,
|
| 155 |
-
attn_implementation="eager" # Change to "flash_attention_2" if available
|
| 156 |
-
)
|
| 157 |
-
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
##############################################################################
|
| 161 |
-
# CSV, TXT, PDF analysis functions
|
| 162 |
-
##############################################################################
|
| 163 |
-
def analyze_csv_file(path: str) -> str:
|
| 164 |
-
"""
|
| 165 |
-
Convert CSV file to string. Truncate if too long.
|
| 166 |
-
"""
|
| 167 |
-
try:
|
| 168 |
-
df = pd.read_csv(path)
|
| 169 |
-
if df.shape[0] > 50 or df.shape[1] > 10:
|
| 170 |
-
df = df.iloc[:50, :10]
|
| 171 |
-
df_str = df.to_string()
|
| 172 |
-
if len(df_str) > MAX_CONTENT_CHARS:
|
| 173 |
-
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
| 174 |
-
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
| 175 |
-
except Exception as e:
|
| 176 |
-
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
def analyze_txt_file(path: str) -> str:
|
| 180 |
-
"""
|
| 181 |
-
Read TXT file. Truncate if too long.
|
| 182 |
-
"""
|
| 183 |
-
try:
|
| 184 |
-
with open(path, "r", encoding="utf-8") as f:
|
| 185 |
-
text = f.read()
|
| 186 |
-
if len(text) > MAX_CONTENT_CHARS:
|
| 187 |
-
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
| 188 |
-
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
| 189 |
-
except Exception as e:
|
| 190 |
-
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
def pdf_to_markdown(pdf_path: str) -> str:
|
| 194 |
-
"""
|
| 195 |
-
Convert PDF text to Markdown. Extract text by pages.
|
| 196 |
-
"""
|
| 197 |
-
text_chunks = []
|
| 198 |
-
try:
|
| 199 |
-
with open(pdf_path, "rb") as f:
|
| 200 |
-
reader = PyPDF2.PdfReader(f)
|
| 201 |
-
max_pages = min(5, len(reader.pages))
|
| 202 |
-
for page_num in range(max_pages):
|
| 203 |
-
page = reader.pages[page_num]
|
| 204 |
-
page_text = page.extract_text() or ""
|
| 205 |
-
page_text = page_text.strip()
|
| 206 |
-
if page_text:
|
| 207 |
-
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
| 208 |
-
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
| 209 |
-
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
| 210 |
-
if len(reader.pages) > max_pages:
|
| 211 |
-
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
|
| 212 |
-
except Exception as e:
|
| 213 |
-
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
| 214 |
-
|
| 215 |
-
full_text = "\n".join(text_chunks)
|
| 216 |
-
if len(full_text) > MAX_CONTENT_CHARS:
|
| 217 |
-
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
| 218 |
-
|
| 219 |
-
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
##############################################################################
|
| 223 |
-
# Image/Video upload limit check
|
| 224 |
-
##############################################################################
|
| 225 |
-
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
| 226 |
-
image_count = 0
|
| 227 |
-
video_count = 0
|
| 228 |
-
for path in paths:
|
| 229 |
-
if path.endswith(".mp4"):
|
| 230 |
-
video_count += 1
|
| 231 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
| 232 |
-
image_count += 1
|
| 233 |
-
return image_count, video_count
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
| 237 |
-
image_count = 0
|
| 238 |
-
video_count = 0
|
| 239 |
-
for item in history:
|
| 240 |
-
if item["role"] != "user" or isinstance(item["content"], str):
|
| 241 |
-
continue
|
| 242 |
-
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
| 243 |
-
file_path = item["content"][0]
|
| 244 |
-
if isinstance(file_path, str):
|
| 245 |
-
if file_path.endswith(".mp4"):
|
| 246 |
-
video_count += 1
|
| 247 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
| 248 |
-
image_count += 1
|
| 249 |
-
return image_count, video_count
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
| 253 |
-
media_files = []
|
| 254 |
-
for f in message["files"]:
|
| 255 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
| 256 |
-
media_files.append(f)
|
| 257 |
-
|
| 258 |
-
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
| 259 |
-
history_image_count, history_video_count = count_files_in_history(history)
|
| 260 |
-
image_count = history_image_count + new_image_count
|
| 261 |
-
video_count = history_video_count + new_video_count
|
| 262 |
-
|
| 263 |
-
if video_count > 1:
|
| 264 |
-
gr.Warning("Only one video is supported.")
|
| 265 |
-
return False
|
| 266 |
-
if video_count == 1:
|
| 267 |
-
if image_count > 0:
|
| 268 |
-
gr.Warning("Mixing images and videos is not allowed.")
|
| 269 |
-
return False
|
| 270 |
-
if "<image>" in message["text"]:
|
| 271 |
-
gr.Warning("Using <image> tags with video files is not supported.")
|
| 272 |
-
return False
|
| 273 |
-
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
| 274 |
-
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
| 275 |
-
return False
|
| 276 |
-
|
| 277 |
-
if "<image>" in message["text"]:
|
| 278 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
| 279 |
-
image_tag_count = message["text"].count("<image>")
|
| 280 |
-
if image_tag_count != len(image_files):
|
| 281 |
-
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
|
| 282 |
-
return False
|
| 283 |
-
|
| 284 |
-
return True
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
##############################################################################
|
| 288 |
-
# Video processing - with temp file tracking
|
| 289 |
-
##############################################################################
|
| 290 |
-
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
| 291 |
-
vidcap = cv2.VideoCapture(video_path)
|
| 292 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 293 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 294 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
| 295 |
-
frames = []
|
| 296 |
-
|
| 297 |
-
for i in range(0, total_frames, frame_interval):
|
| 298 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 299 |
-
success, image = vidcap.read()
|
| 300 |
-
if success:
|
| 301 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 302 |
-
# Resize image
|
| 303 |
-
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
| 304 |
-
pil_image = Image.fromarray(image)
|
| 305 |
-
timestamp = round(i / fps, 2)
|
| 306 |
-
frames.append((pil_image, timestamp))
|
| 307 |
-
if len(frames) >= 5:
|
| 308 |
-
break
|
| 309 |
-
|
| 310 |
-
vidcap.release()
|
| 311 |
-
return frames
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
| 315 |
-
content = []
|
| 316 |
-
temp_files = [] # List for tracking temp files
|
| 317 |
-
|
| 318 |
-
frames = downsample_video(video_path)
|
| 319 |
-
for frame in frames:
|
| 320 |
-
pil_image, timestamp = frame
|
| 321 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
| 322 |
-
pil_image.save(temp_file.name)
|
| 323 |
-
temp_files.append(temp_file.name) # Track for deletion later
|
| 324 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 325 |
-
content.append({"type": "image", "url": temp_file.name})
|
| 326 |
-
|
| 327 |
-
return content, temp_files
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
##############################################################################
|
| 331 |
-
# interleaved <image> processing
|
| 332 |
-
##############################################################################
|
| 333 |
-
def process_interleaved_images(message: dict) -> list[dict]:
|
| 334 |
-
parts = re.split(r"(<image>)", message["text"])
|
| 335 |
-
content = []
|
| 336 |
-
image_index = 0
|
| 337 |
-
|
| 338 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
| 339 |
-
|
| 340 |
-
for part in parts:
|
| 341 |
-
if part == "<image>" and image_index < len(image_files):
|
| 342 |
-
content.append({"type": "image", "url": image_files[image_index]})
|
| 343 |
-
image_index += 1
|
| 344 |
-
elif part.strip():
|
| 345 |
-
content.append({"type": "text", "text": part.strip()})
|
| 346 |
-
else:
|
| 347 |
-
if isinstance(part, str) and part != "<image>":
|
| 348 |
-
content.append({"type": "text", "text": part})
|
| 349 |
-
return content
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
##############################################################################
|
| 353 |
-
# PDF + CSV + TXT + Image/Video
|
| 354 |
-
##############################################################################
|
| 355 |
-
def is_image_file(file_path: str) -> bool:
|
| 356 |
-
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
| 357 |
-
|
| 358 |
-
def is_video_file(file_path: str) -> bool:
|
| 359 |
-
return file_path.endswith(".mp4")
|
| 360 |
-
|
| 361 |
-
def is_document_file(file_path: str) -> bool:
|
| 362 |
-
return (
|
| 363 |
-
file_path.lower().endswith(".pdf")
|
| 364 |
-
or file_path.lower().endswith(".csv")
|
| 365 |
-
or file_path.lower().endswith(".txt")
|
| 366 |
-
)
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
| 370 |
-
temp_files = [] # List for tracking temp files
|
| 371 |
-
|
| 372 |
-
if not message["files"]:
|
| 373 |
-
return [{"type": "text", "text": message["text"]}], temp_files
|
| 374 |
-
|
| 375 |
-
video_files = [f for f in message["files"] if is_video_file(f)]
|
| 376 |
-
image_files = [f for f in message["files"] if is_image_file(f)]
|
| 377 |
-
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
| 378 |
-
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
| 379 |
-
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
| 380 |
-
|
| 381 |
-
content_list = [{"type": "text", "text": message["text"]}]
|
| 382 |
-
|
| 383 |
-
for csv_path in csv_files:
|
| 384 |
-
csv_analysis = analyze_csv_file(csv_path)
|
| 385 |
-
content_list.append({"type": "text", "text": csv_analysis})
|
| 386 |
-
|
| 387 |
-
for txt_path in txt_files:
|
| 388 |
-
txt_analysis = analyze_txt_file(txt_path)
|
| 389 |
-
content_list.append({"type": "text", "text": txt_analysis})
|
| 390 |
-
|
| 391 |
-
for pdf_path in pdf_files:
|
| 392 |
-
pdf_markdown = pdf_to_markdown(pdf_path)
|
| 393 |
-
content_list.append({"type": "text", "text": pdf_markdown})
|
| 394 |
-
|
| 395 |
-
if video_files:
|
| 396 |
-
video_content, video_temp_files = process_video(video_files[0])
|
| 397 |
-
content_list += video_content
|
| 398 |
-
temp_files.extend(video_temp_files)
|
| 399 |
-
return content_list, temp_files
|
| 400 |
-
|
| 401 |
-
if "<image>" in message["text"] and image_files:
|
| 402 |
-
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
| 403 |
-
if content_list and content_list[0]["type"] == "text":
|
| 404 |
-
content_list = content_list[1:]
|
| 405 |
-
return interleaved_content + content_list, temp_files
|
| 406 |
-
else:
|
| 407 |
-
for img_path in image_files:
|
| 408 |
-
content_list.append({"type": "image", "url": img_path})
|
| 409 |
-
|
| 410 |
-
return content_list, temp_files
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
##############################################################################
|
| 414 |
-
# history -> LLM message conversion
|
| 415 |
-
##############################################################################
|
| 416 |
-
def process_history(history: list[dict]) -> list[dict]:
|
| 417 |
-
messages = []
|
| 418 |
-
current_user_content: list[dict] = []
|
| 419 |
-
for item in history:
|
| 420 |
-
if item["role"] == "assistant":
|
| 421 |
-
if current_user_content:
|
| 422 |
-
messages.append({"role": "user", "content": current_user_content})
|
| 423 |
-
current_user_content = []
|
| 424 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
| 425 |
-
else:
|
| 426 |
-
content = item["content"]
|
| 427 |
-
if isinstance(content, str):
|
| 428 |
-
current_user_content.append({"type": "text", "text": content})
|
| 429 |
-
elif isinstance(content, list) and len(content) > 0:
|
| 430 |
-
file_path = content[0]
|
| 431 |
-
if is_image_file(file_path):
|
| 432 |
-
current_user_content.append({"type": "image", "url": file_path})
|
| 433 |
-
else:
|
| 434 |
-
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
|
| 435 |
-
|
| 436 |
-
if current_user_content:
|
| 437 |
-
messages.append({"role": "user", "content": current_user_content})
|
| 438 |
-
|
| 439 |
-
return messages
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
##############################################################################
|
| 443 |
-
# Model generation function with OOM catch
|
| 444 |
-
##############################################################################
|
| 445 |
-
def _model_gen_with_oom_catch(**kwargs):
|
| 446 |
-
"""
|
| 447 |
-
Catch OutOfMemoryError in separate thread
|
| 448 |
-
"""
|
| 449 |
-
try:
|
| 450 |
-
model.generate(**kwargs)
|
| 451 |
-
except torch.cuda.OutOfMemoryError:
|
| 452 |
-
raise RuntimeError(
|
| 453 |
-
"[OutOfMemoryError] GPU memory insufficient. "
|
| 454 |
-
"Please reduce Max New Tokens or prompt length."
|
| 455 |
-
)
|
| 456 |
-
finally:
|
| 457 |
-
# Clear cache after generation
|
| 458 |
-
clear_cuda_cache()
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
##############################################################################
|
| 462 |
-
# Main inference function (with auto web search)
|
| 463 |
-
##############################################################################
|
| 464 |
-
@spaces.GPU(duration=120)
|
| 465 |
-
def run(
|
| 466 |
-
message: dict,
|
| 467 |
-
history: list[dict],
|
| 468 |
-
system_prompt: str = "",
|
| 469 |
-
max_new_tokens: int = 512,
|
| 470 |
-
use_web_search: bool = False,
|
| 471 |
-
web_search_query: str = "",
|
| 472 |
-
) -> Iterator[str]:
|
| 473 |
|
| 474 |
-
|
| 475 |
-
yield ""
|
| 476 |
-
return
|
| 477 |
-
|
| 478 |
-
temp_files = [] # For tracking temp files
|
| 479 |
-
|
| 480 |
try:
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
# Used internally only (hidden from UI)
|
| 484 |
-
if system_prompt.strip():
|
| 485 |
-
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
|
| 486 |
-
|
| 487 |
-
if use_web_search:
|
| 488 |
-
user_text = message["text"]
|
| 489 |
-
ws_query = extract_keywords(user_text, top_k=5)
|
| 490 |
-
if ws_query.strip():
|
| 491 |
-
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
| 492 |
-
ws_result = do_web_search(ws_query)
|
| 493 |
-
combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
|
| 494 |
-
else:
|
| 495 |
-
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
| 496 |
-
|
| 497 |
-
messages = []
|
| 498 |
-
if combined_system_msg.strip():
|
| 499 |
-
messages.append({
|
| 500 |
-
"role": "system",
|
| 501 |
-
"content": [{"type": "text", "text": combined_system_msg.strip()}],
|
| 502 |
-
})
|
| 503 |
-
|
| 504 |
-
messages.extend(process_history(history))
|
| 505 |
-
|
| 506 |
-
user_content, user_temp_files = process_new_user_message(message)
|
| 507 |
-
temp_files.extend(user_temp_files) # Track temp files
|
| 508 |
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
messages.append({"role": "user", "content": user_content})
|
| 513 |
-
|
| 514 |
-
inputs = processor.apply_chat_template(
|
| 515 |
-
messages,
|
| 516 |
-
add_generation_prompt=True,
|
| 517 |
-
tokenize=True,
|
| 518 |
-
return_dict=True,
|
| 519 |
-
return_tensors="pt",
|
| 520 |
-
).to(device=model.device, dtype=torch.bfloat16)
|
| 521 |
|
| 522 |
-
#
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
| 527 |
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
inputs,
|
| 531 |
-
streamer=streamer,
|
| 532 |
-
max_new_tokens=max_new_tokens,
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
| 536 |
-
t.start()
|
| 537 |
-
|
| 538 |
-
output = ""
|
| 539 |
-
for new_text in streamer:
|
| 540 |
-
output += new_text
|
| 541 |
-
yield output
|
| 542 |
-
|
| 543 |
-
except Exception as e:
|
| 544 |
-
logger.error(f"Error in run: {str(e)}")
|
| 545 |
-
yield f"Error occurred: {str(e)}"
|
| 546 |
-
|
| 547 |
-
finally:
|
| 548 |
-
# Delete temp files
|
| 549 |
-
for temp_file in temp_files:
|
| 550 |
-
try:
|
| 551 |
-
if os.path.exists(temp_file):
|
| 552 |
-
os.unlink(temp_file)
|
| 553 |
-
logger.info(f"Deleted temp file: {temp_file}")
|
| 554 |
-
except Exception as e:
|
| 555 |
-
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
| 556 |
|
| 557 |
-
#
|
| 558 |
try:
|
| 559 |
-
|
| 560 |
except:
|
| 561 |
pass
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
# Gradio UI (Blocks) 구성
|
| 568 |
-
##############################################################################
|
| 569 |
-
css = """
|
| 570 |
-
/* Global Styles */
|
| 571 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
| 572 |
-
|
| 573 |
-
* {
|
| 574 |
-
box-sizing: border-box;
|
| 575 |
-
}
|
| 576 |
-
|
| 577 |
-
body {
|
| 578 |
-
margin: 0;
|
| 579 |
-
padding: 0;
|
| 580 |
-
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
| 581 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 582 |
-
min-height: 100vh;
|
| 583 |
-
color: #2d3748;
|
| 584 |
-
}
|
| 585 |
-
|
| 586 |
-
/* Container Styling */
|
| 587 |
-
.gradio-container {
|
| 588 |
-
background: rgba(255, 255, 255, 0.95);
|
| 589 |
-
backdrop-filter: blur(20px);
|
| 590 |
-
border-radius: 24px;
|
| 591 |
-
padding: 40px;
|
| 592 |
-
margin: 30px auto;
|
| 593 |
-
width: 95% !important;
|
| 594 |
-
max-width: 1400px !important;
|
| 595 |
-
box-shadow:
|
| 596 |
-
0 25px 50px -12px rgba(0, 0, 0, 0.25),
|
| 597 |
-
0 0 0 1px rgba(255, 255, 255, 0.05);
|
| 598 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
| 599 |
-
}
|
| 600 |
-
|
| 601 |
-
/* Header Styling */
|
| 602 |
-
.header-container {
|
| 603 |
-
text-align: center;
|
| 604 |
-
margin-bottom: 2rem;
|
| 605 |
-
padding: 2rem 0;
|
| 606 |
-
background: linear-gradient(135deg, #f093fb 0%, #f5576c 50%, #4facfe 100%);
|
| 607 |
-
background-clip: text;
|
| 608 |
-
-webkit-background-clip: text;
|
| 609 |
-
-webkit-text-fill-color: transparent;
|
| 610 |
-
}
|
| 611 |
-
|
| 612 |
-
/* Button Styling */
|
| 613 |
-
button, .btn {
|
| 614 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 615 |
-
border: none !important;
|
| 616 |
-
color: white !important;
|
| 617 |
-
padding: 12px 28px !important;
|
| 618 |
-
border-radius: 12px !important;
|
| 619 |
-
font-weight: 600 !important;
|
| 620 |
-
font-size: 14px !important;
|
| 621 |
-
text-transform: none !important;
|
| 622 |
-
letter-spacing: 0.5px !important;
|
| 623 |
-
cursor: pointer !important;
|
| 624 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
| 625 |
-
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
|
| 626 |
-
position: relative !important;
|
| 627 |
-
overflow: hidden !important;
|
| 628 |
-
}
|
| 629 |
-
|
| 630 |
-
button:hover, .btn:hover {
|
| 631 |
-
transform: translateY(-2px) !important;
|
| 632 |
-
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
|
| 633 |
-
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important;
|
| 634 |
-
}
|
| 635 |
-
|
| 636 |
-
button:active, .btn:active {
|
| 637 |
-
transform: translateY(0) !important;
|
| 638 |
-
}
|
| 639 |
-
|
| 640 |
-
/* Primary Action Button */
|
| 641 |
-
button[variant="primary"], .primary-btn {
|
| 642 |
-
background: linear-gradient(135deg, #ff6b6b 0%, #ee5a52 100%) !important;
|
| 643 |
-
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.4) !important;
|
| 644 |
-
}
|
| 645 |
-
|
| 646 |
-
button[variant="primary"]:hover, .primary-btn:hover {
|
| 647 |
-
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.6) !important;
|
| 648 |
-
}
|
| 649 |
-
|
| 650 |
-
/* Input Fields */
|
| 651 |
-
.multimodal-textbox, textarea, input {
|
| 652 |
-
background: rgba(255, 255, 255, 0.8) !important;
|
| 653 |
-
backdrop-filter: blur(10px) !important;
|
| 654 |
-
border: 2px solid rgba(102, 126, 234, 0.2) !important;
|
| 655 |
-
border-radius: 16px !important;
|
| 656 |
-
color: #2d3748 !important;
|
| 657 |
-
font-family: 'Inter', sans-serif !important;
|
| 658 |
-
padding: 16px 20px !important;
|
| 659 |
-
transition: all 0.3s ease !important;
|
| 660 |
-
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1) !important;
|
| 661 |
-
}
|
| 662 |
-
|
| 663 |
-
.multimodal-textbox:focus, textarea:focus, input:focus {
|
| 664 |
-
border-color: #667eea !important;
|
| 665 |
-
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1), 0 8px 30px rgba(0, 0, 0, 0.15) !important;
|
| 666 |
-
outline: none !important;
|
| 667 |
-
background: rgba(255, 255, 255, 0.95) !important;
|
| 668 |
-
}
|
| 669 |
-
|
| 670 |
-
/* Chat Interface */
|
| 671 |
-
.chatbox, .chatbot {
|
| 672 |
-
background: rgba(255, 255, 255, 0.6) !important;
|
| 673 |
-
backdrop-filter: blur(15px) !important;
|
| 674 |
-
border-radius: 20px !important;
|
| 675 |
-
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
| 676 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
|
| 677 |
-
padding: 24px !important;
|
| 678 |
-
}
|
| 679 |
-
|
| 680 |
-
.message {
|
| 681 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
| 682 |
-
border-radius: 16px !important;
|
| 683 |
-
padding: 16px 20px !important;
|
| 684 |
-
margin: 8px 0 !important;
|
| 685 |
-
border: 1px solid rgba(102, 126, 234, 0.1) !important;
|
| 686 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
|
| 687 |
-
transition: all 0.3s ease !important;
|
| 688 |
-
}
|
| 689 |
-
|
| 690 |
-
.message:hover {
|
| 691 |
-
transform: translateY(-1px) !important;
|
| 692 |
-
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.1) !important;
|
| 693 |
-
}
|
| 694 |
-
|
| 695 |
-
/* Assistant Message Styling */
|
| 696 |
-
.message.assistant {
|
| 697 |
-
background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%) !important;
|
| 698 |
-
border-left: 4px solid #667eea !important;
|
| 699 |
-
}
|
| 700 |
-
|
| 701 |
-
/* User Message Styling */
|
| 702 |
-
.message.user {
|
| 703 |
-
background: linear-gradient(135deg, rgba(255, 107, 107, 0.1) 0%, rgba(238, 90, 82, 0.1) 100%) !important;
|
| 704 |
-
border-left: 4px solid #ff6b6b !important;
|
| 705 |
-
}
|
| 706 |
-
|
| 707 |
-
/* Cards and Panels */
|
| 708 |
-
.card, .panel {
|
| 709 |
-
background: rgba(255, 255, 255, 0.8) !important;
|
| 710 |
-
backdrop-filter: blur(15px) !important;
|
| 711 |
-
border-radius: 20px !important;
|
| 712 |
-
padding: 24px !important;
|
| 713 |
-
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
| 714 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
|
| 715 |
-
transition: all 0.3s ease !important;
|
| 716 |
-
}
|
| 717 |
-
|
| 718 |
-
.card:hover, .panel:hover {
|
| 719 |
-
transform: translateY(-4px) !important;
|
| 720 |
-
box-shadow: 0 16px 40px rgba(0, 0, 0, 0.15) !important;
|
| 721 |
-
}
|
| 722 |
-
|
| 723 |
-
/* Checkbox Styling */
|
| 724 |
-
input[type="checkbox"] {
|
| 725 |
-
appearance: none !important;
|
| 726 |
-
width: 20px !important;
|
| 727 |
-
height: 20px !important;
|
| 728 |
-
border: 2px solid #667eea !important;
|
| 729 |
-
border-radius: 6px !important;
|
| 730 |
-
background: rgba(255, 255, 255, 0.8) !important;
|
| 731 |
-
cursor: pointer !important;
|
| 732 |
-
transition: all 0.3s ease !important;
|
| 733 |
-
position: relative !important;
|
| 734 |
-
}
|
| 735 |
-
|
| 736 |
-
input[type="checkbox"]:checked {
|
| 737 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 738 |
-
border-color: #667eea !important;
|
| 739 |
-
}
|
| 740 |
-
|
| 741 |
-
input[type="checkbox"]:checked::after {
|
| 742 |
-
content: "✓" !important;
|
| 743 |
-
color: white !important;
|
| 744 |
-
font-size: 14px !important;
|
| 745 |
-
font-weight: bold !important;
|
| 746 |
-
position: absolute !important;
|
| 747 |
-
top: 50% !important;
|
| 748 |
-
left: 50% !important;
|
| 749 |
-
transform: translate(-50%, -50%) !important;
|
| 750 |
-
}
|
| 751 |
-
|
| 752 |
-
/* Progress Indicators */
|
| 753 |
-
.progress {
|
| 754 |
-
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
|
| 755 |
-
border-radius: 10px !important;
|
| 756 |
-
height: 8px !important;
|
| 757 |
-
}
|
| 758 |
-
|
| 759 |
-
/* Tooltips */
|
| 760 |
-
.tooltip {
|
| 761 |
-
background: rgba(45, 55, 72, 0.95) !important;
|
| 762 |
-
backdrop-filter: blur(10px) !important;
|
| 763 |
-
color: white !important;
|
| 764 |
-
border-radius: 8px !important;
|
| 765 |
-
padding: 8px 12px !important;
|
| 766 |
-
font-size: 12px !important;
|
| 767 |
-
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
|
| 768 |
-
}
|
| 769 |
-
|
| 770 |
-
/* Slider Styling */
|
| 771 |
-
input[type="range"] {
|
| 772 |
-
appearance: none !important;
|
| 773 |
-
height: 8px !important;
|
| 774 |
-
border-radius: 4px !important;
|
| 775 |
-
background: linear-gradient(90deg, #e2e8f0 0%, #667eea 100%) !important;
|
| 776 |
-
outline: none !important;
|
| 777 |
-
}
|
| 778 |
-
|
| 779 |
-
input[type="range"]::-webkit-slider-thumb {
|
| 780 |
-
appearance: none !important;
|
| 781 |
-
width: 20px !important;
|
| 782 |
-
height: 20px !important;
|
| 783 |
-
border-radius: 50% !important;
|
| 784 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 785 |
-
cursor: pointer !important;
|
| 786 |
-
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.4) !important;
|
| 787 |
-
}
|
| 788 |
-
|
| 789 |
-
/* File Upload Area */
|
| 790 |
-
.file-upload {
|
| 791 |
-
border: 2px dashed #667eea !important;
|
| 792 |
-
border-radius: 16px !important;
|
| 793 |
-
background: rgba(102, 126, 234, 0.05) !important;
|
| 794 |
-
padding: 40px !important;
|
| 795 |
-
text-align: center !important;
|
| 796 |
-
transition: all 0.3s ease !important;
|
| 797 |
-
}
|
| 798 |
-
|
| 799 |
-
.file-upload:hover {
|
| 800 |
-
border-color: #764ba2 !important;
|
| 801 |
-
background: rgba(102, 126, 234, 0.1) !important;
|
| 802 |
-
transform: scale(1.02) !important;
|
| 803 |
-
}
|
| 804 |
-
|
| 805 |
-
/* Animations */
|
| 806 |
-
@keyframes fadeInUp {
|
| 807 |
-
from {
|
| 808 |
-
opacity: 0;
|
| 809 |
-
transform: translateY(30px);
|
| 810 |
-
}
|
| 811 |
-
to {
|
| 812 |
-
opacity: 1;
|
| 813 |
-
transform: translateY(0);
|
| 814 |
-
}
|
| 815 |
-
}
|
| 816 |
-
|
| 817 |
-
@keyframes slideIn {
|
| 818 |
-
from {
|
| 819 |
-
opacity: 0;
|
| 820 |
-
transform: translateX(-20px);
|
| 821 |
-
}
|
| 822 |
-
to {
|
| 823 |
-
opacity: 1;
|
| 824 |
-
transform: translateX(0);
|
| 825 |
-
}
|
| 826 |
-
}
|
| 827 |
-
|
| 828 |
-
.animate-fade-in {
|
| 829 |
-
animation: fadeInUp 0.6s ease-out !important;
|
| 830 |
-
}
|
| 831 |
-
|
| 832 |
-
.animate-slide-in {
|
| 833 |
-
animation: slideIn 0.4s ease-out !important;
|
| 834 |
-
}
|
| 835 |
-
|
| 836 |
-
/* Responsive Design */
|
| 837 |
-
@media (max-width: 768px) {
|
| 838 |
-
.gradio-container {
|
| 839 |
-
margin: 15px !important;
|
| 840 |
-
padding: 24px !important;
|
| 841 |
-
width: calc(100% - 30px) !important;
|
| 842 |
-
}
|
| 843 |
-
|
| 844 |
-
button, .btn {
|
| 845 |
-
padding: 10px 20px !important;
|
| 846 |
-
font-size: 13px !important;
|
| 847 |
-
}
|
| 848 |
-
}
|
| 849 |
-
|
| 850 |
-
/* Dark Mode Support */
|
| 851 |
-
@media (prefers-color-scheme: dark) {
|
| 852 |
-
.gradio-container {
|
| 853 |
-
background: rgba(26, 32, 44, 0.95) !important;
|
| 854 |
-
color: #e2e8f0 !important;
|
| 855 |
-
}
|
| 856 |
-
|
| 857 |
-
.message {
|
| 858 |
-
background: rgba(45, 55, 72, 0.8) !important;
|
| 859 |
-
color: #e2e8f0 !important;
|
| 860 |
-
}
|
| 861 |
-
}
|
| 862 |
-
|
| 863 |
-
/* Hide Footer - Safe and Specific Selectors */
|
| 864 |
-
footer {
|
| 865 |
-
visibility: hidden !important;
|
| 866 |
-
display: none !important;
|
| 867 |
-
}
|
| 868 |
-
|
| 869 |
-
.footer {
|
| 870 |
-
visibility: hidden !important;
|
| 871 |
-
display: none !important;
|
| 872 |
-
}
|
| 873 |
-
|
| 874 |
-
/* Hide only Gradio attribution footer specifically */
|
| 875 |
-
footer[class*="svelte"] {
|
| 876 |
-
visibility: hidden !important;
|
| 877 |
-
display: none !important;
|
| 878 |
-
}
|
| 879 |
-
|
| 880 |
-
/* Hide Gradio attribution links */
|
| 881 |
-
a[href*="gradio.app"] {
|
| 882 |
-
visibility: hidden !important;
|
| 883 |
-
display: none !important;
|
| 884 |
-
}
|
| 885 |
-
|
| 886 |
-
/* More specific footer hiding for Gradio */
|
| 887 |
-
.gradio-container footer,
|
| 888 |
-
.gradio-container .footer {
|
| 889 |
-
visibility: hidden !important;
|
| 890 |
-
display: none !important;
|
| 891 |
-
}
|
| 892 |
-
|
| 893 |
-
/* Custom Scrollbar */
|
| 894 |
-
::-webkit-scrollbar {
|
| 895 |
-
width: 8px !important;
|
| 896 |
-
}
|
| 897 |
-
|
| 898 |
-
::-webkit-scrollbar-track {
|
| 899 |
-
background: rgba(226, 232, 240, 0.3) !important;
|
| 900 |
-
border-radius: 4px !important;
|
| 901 |
-
}
|
| 902 |
-
|
| 903 |
-
::-webkit-scrollbar-thumb {
|
| 904 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 905 |
-
border-radius: 4px !important;
|
| 906 |
-
}
|
| 907 |
-
|
| 908 |
-
::-webkit-scrollbar-thumb:hover {
|
| 909 |
-
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important;
|
| 910 |
-
}
|
| 911 |
-
"""
|
| 912 |
-
|
| 913 |
-
title_html = """
|
| 914 |
-
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in">
|
| 915 |
-
<div style="
|
| 916 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
|
| 917 |
-
background-clip: text;
|
| 918 |
-
-webkit-background-clip: text;
|
| 919 |
-
-webkit-text-fill-color: transparent;
|
| 920 |
-
margin-bottom: 1rem;
|
| 921 |
-
">
|
| 922 |
-
<h1 style="
|
| 923 |
-
margin: 0;
|
| 924 |
-
font-size: 3.5em;
|
| 925 |
-
font-weight: 700;
|
| 926 |
-
letter-spacing: -0.02em;
|
| 927 |
-
text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3);
|
| 928 |
-
">
|
| 929 |
-
🤖 Robo Beam-Search
|
| 930 |
-
</h1>
|
| 931 |
-
</div>
|
| 932 |
-
|
| 933 |
-
<div style="
|
| 934 |
-
background: rgba(255, 255, 255, 0.9);
|
| 935 |
-
backdrop-filter: blur(15px);
|
| 936 |
-
border-radius: 16px;
|
| 937 |
-
padding: 1.5rem 2rem;
|
| 938 |
-
margin: 1rem auto;
|
| 939 |
-
max-width: 700px;
|
| 940 |
-
border: 1px solid rgba(102, 126, 234, 0.2);
|
| 941 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
| 942 |
-
">
|
| 943 |
-
<p style="
|
| 944 |
-
margin: 0.5em 0;
|
| 945 |
-
font-size: 1.1em;
|
| 946 |
-
color: #4a5568;
|
| 947 |
-
font-weight: 500;
|
| 948 |
-
">
|
| 949 |
-
<span style="
|
| 950 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 951 |
-
background-clip: text;
|
| 952 |
-
-webkit-background-clip: text;
|
| 953 |
-
-webkit-text-fill-color: transparent;
|
| 954 |
-
font-weight: 600;
|
| 955 |
-
">Base LLM:</span> VIDraft/Gemma-3-R1984-4B
|
| 956 |
-
</p>
|
| 957 |
-
<p style="
|
| 958 |
-
margin: 1em 0 0 0;
|
| 959 |
-
font-size: 1em;
|
| 960 |
-
color: #718096;
|
| 961 |
-
line-height: 1.6;
|
| 962 |
-
font-weight: 400;
|
| 963 |
-
">
|
| 964 |
-
비파괴 X-RAY 검사/조사 이미지에 대한 위험 요소 식별/분석 기반 대화형 온프레미스 AI 플랫폼
|
| 965 |
-
</p>
|
| 966 |
-
</div>
|
| 967 |
-
|
| 968 |
-
<div style="
|
| 969 |
-
display: flex;
|
| 970 |
-
justify-content: center;
|
| 971 |
-
gap: 1rem;
|
| 972 |
-
margin-top: 2rem;
|
| 973 |
-
flex-wrap: wrap;
|
| 974 |
-
">
|
| 975 |
-
<div style="
|
| 976 |
-
background: rgba(102, 126, 234, 0.1);
|
| 977 |
-
border: 1px solid rgba(102, 126, 234, 0.3);
|
| 978 |
-
border-radius: 12px;
|
| 979 |
-
padding: 0.5rem 1rem;
|
| 980 |
-
font-size: 0.9em;
|
| 981 |
-
color: #667eea;
|
| 982 |
-
font-weight: 500;
|
| 983 |
-
">
|
| 984 |
-
🔍 X-RAY 분석
|
| 985 |
-
</div>
|
| 986 |
-
<div style="
|
| 987 |
-
background: rgba(118, 75, 162, 0.1);
|
| 988 |
-
border: 1px solid rgba(118, 75, 162, 0.3);
|
| 989 |
-
border-radius: 12px;
|
| 990 |
-
padding: 0.5rem 1rem;
|
| 991 |
-
font-size: 0.9em;
|
| 992 |
-
color: #764ba2;
|
| 993 |
-
font-weight: 500;
|
| 994 |
-
">
|
| 995 |
-
🛡️ 보안 스캐닝
|
| 996 |
-
</div>
|
| 997 |
-
<div style="
|
| 998 |
-
background: rgba(240, 147, 251, 0.1);
|
| 999 |
-
border: 1px solid rgba(240, 147, 251, 0.3);
|
| 1000 |
-
border-radius: 12px;
|
| 1001 |
-
padding: 0.5rem 1rem;
|
| 1002 |
-
font-size: 0.9em;
|
| 1003 |
-
color: #f093fb;
|
| 1004 |
-
font-weight: 500;
|
| 1005 |
-
">
|
| 1006 |
-
🌐 웹 검색
|
| 1007 |
-
</div>
|
| 1008 |
-
</div>
|
| 1009 |
-
</div>
|
| 1010 |
-
"""
|
| 1011 |
-
|
| 1012 |
-
title_html = """
|
| 1013 |
-
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in">
|
| 1014 |
-
<div style="
|
| 1015 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
|
| 1016 |
-
background-clip: text;
|
| 1017 |
-
-webkit-background-clip: text;
|
| 1018 |
-
-webkit-text-fill-color: transparent;
|
| 1019 |
-
margin-bottom: 1rem;
|
| 1020 |
-
">
|
| 1021 |
-
<h1 style="
|
| 1022 |
-
margin: 0;
|
| 1023 |
-
font-size: 3.5em;
|
| 1024 |
-
font-weight: 700;
|
| 1025 |
-
letter-spacing: -0.02em;
|
| 1026 |
-
text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3);
|
| 1027 |
-
">
|
| 1028 |
-
🤖 Robo Beam-Search
|
| 1029 |
-
</h1>
|
| 1030 |
-
</div>
|
| 1031 |
-
|
| 1032 |
-
<div style="
|
| 1033 |
-
background: rgba(255, 255, 255, 0.9);
|
| 1034 |
-
backdrop-filter: blur(15px);
|
| 1035 |
-
border-radius: 16px;
|
| 1036 |
-
padding: 1.5rem 2rem;
|
| 1037 |
-
margin: 1rem auto;
|
| 1038 |
-
max-width: 700px;
|
| 1039 |
-
border: 1px solid rgba(102, 126, 234, 0.2);
|
| 1040 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
| 1041 |
-
">
|
| 1042 |
-
<p style="
|
| 1043 |
-
margin: 0.5em 0;
|
| 1044 |
-
font-size: 1.1em;
|
| 1045 |
-
color: #4a5568;
|
| 1046 |
-
font-weight: 500;
|
| 1047 |
-
">
|
| 1048 |
-
<span style="
|
| 1049 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 1050 |
-
background-clip: text;
|
| 1051 |
-
-webkit-background-clip: text;
|
| 1052 |
-
-webkit-text-fill-color: transparent;
|
| 1053 |
-
font-weight: 600;
|
| 1054 |
-
">Base LLM:</span> VIDraft/Gemma-3-R1984-4B
|
| 1055 |
-
</p>
|
| 1056 |
-
<p style="
|
| 1057 |
-
margin: 1em 0 0 0;
|
| 1058 |
-
font-size: 1em;
|
| 1059 |
-
color: #718096;
|
| 1060 |
-
line-height: 1.6;
|
| 1061 |
-
font-weight: 400;
|
| 1062 |
-
">
|
| 1063 |
-
비파괴 X-RAY 검사/조사 이미지에 대한 위험 요소 식별/분석 기반 대화형 온프레미스 AI 플랫폼
|
| 1064 |
-
</p>
|
| 1065 |
-
</div>
|
| 1066 |
-
|
| 1067 |
-
<div style="
|
| 1068 |
-
display: flex;
|
| 1069 |
-
justify-content: center;
|
| 1070 |
-
gap: 1rem;
|
| 1071 |
-
margin-top: 2rem;
|
| 1072 |
-
flex-wrap: wrap;
|
| 1073 |
-
">
|
| 1074 |
-
<div style="
|
| 1075 |
-
background: rgba(102, 126, 234, 0.1);
|
| 1076 |
-
border: 1px solid rgba(102, 126, 234, 0.3);
|
| 1077 |
-
border-radius: 12px;
|
| 1078 |
-
padding: 0.5rem 1rem;
|
| 1079 |
-
font-size: 0.9em;
|
| 1080 |
-
color: #667eea;
|
| 1081 |
-
font-weight: 500;
|
| 1082 |
-
">
|
| 1083 |
-
🔍 X-RAY 분석
|
| 1084 |
-
</div>
|
| 1085 |
-
<div style="
|
| 1086 |
-
background: rgba(118, 75, 162, 0.1);
|
| 1087 |
-
border: 1px solid rgba(118, 75, 162, 0.3);
|
| 1088 |
-
border-radius: 12px;
|
| 1089 |
-
padding: 0.5rem 1rem;
|
| 1090 |
-
font-size: 0.9em;
|
| 1091 |
-
color: #764ba2;
|
| 1092 |
-
font-weight: 500;
|
| 1093 |
-
">
|
| 1094 |
-
🛡️ 보안 스캐닝
|
| 1095 |
-
</div>
|
| 1096 |
-
<div style="
|
| 1097 |
-
background: rgba(240, 147, 251, 0.1);
|
| 1098 |
-
border: 1px solid rgba(240, 147, 251, 0.3);
|
| 1099 |
-
border-radius: 12px;
|
| 1100 |
-
padding: 0.5rem 1rem;
|
| 1101 |
-
font-size: 0.9em;
|
| 1102 |
-
color: #f093fb;
|
| 1103 |
-
font-weight: 500;
|
| 1104 |
-
">
|
| 1105 |
-
🌐 웹 검색
|
| 1106 |
-
</div>
|
| 1107 |
-
</div>
|
| 1108 |
-
</div>
|
| 1109 |
-
"""
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
title_html = """
|
| 1114 |
-
<div align="center" style="margin-bottom: 1em;">
|
| 1115 |
-
<h1 style="margin-bottom: 0.2em; font-size: 1.8em; color: #333;">🤖 Robo Beam-Search</h1>
|
| 1116 |
-
<p style="margin: 0.5em 0; font-size: 0.9em; color: #888; max-width: 600px; margin-left: auto; margin-right: auto;">
|
| 1117 |
-
비파괴 X-RAY 검사/조사 이미지에 대한 위험 요소 식별/분석 기반 대화형 온프레미스 AI 플랫폼 <strong>Base LLM:</strong> Gemma-3-R1984-4B / 12B/ 27B @Powered by VIDraft
|
| 1118 |
-
</p>
|
| 1119 |
-
</div>
|
| 1120 |
-
"""
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner") as demo:
|
| 1124 |
-
gr.Markdown(title_html)
|
| 1125 |
-
|
| 1126 |
-
# Display the web search option (while the system prompt and token slider remain hidden)
|
| 1127 |
-
web_search_checkbox = gr.Checkbox(
|
| 1128 |
-
label="Deep Research",
|
| 1129 |
-
value=False
|
| 1130 |
-
)
|
| 1131 |
-
|
| 1132 |
-
# X-RAY security scanning system prompt
|
| 1133 |
-
system_prompt_box = gr.Textbox(
|
| 1134 |
-
lines=3,
|
| 1135 |
-
value="""반드시 한글로 답변하라. 당신은 위협 탐지와 항공 보안에 특화된 첨단 X-RAY 보안 스캐닝 AI입니다. 당신의 주 임무는 X-RAY 이미지에서 모든 잠재적 보안 위협을 최상의 정확도로 식별하는 것입니다.
|
| 1136 |
-
|
| 1137 |
-
중요: 보고서에 날짜, 시간, 또는 현재 일시를 절대 포함하지 마십시오.
|
| 1138 |
-
|
| 1139 |
-
탐지 우선순위:
|
| 1140 |
-
1. **무기**: 화기(권총, 소총 등), 칼·날붙이·예리한 물체, 호신용·격투 무기
|
| 1141 |
-
2. **폭발물**: 폭탄, 기폭장치, 폭발성 물질, 의심스러운 전자 장치, 배터리가 연결된 전선
|
| 1142 |
-
3. **반입 금지 물품**: 가위, 대용량 배터리, 스프링(무기 부품 가능), 공구류
|
| 1143 |
-
4. **액체**: 100 ml 이상 용기에 담긴 모든 액체(화학 위협 가능)
|
| 1144 |
-
5. **EOD 구성품**: 폭발물로 조립될 수 있는 모든 부품
|
| 1145 |
-
|
| 1146 |
-
분석 프로토콜:
|
| 1147 |
-
- 좌상단에서 우하단으로 체계적으로 스캔
|
| 1148 |
-
- 위협 위치를 격자 기준으로 보고(예: “좌상단 사분면”)
|
| 1149 |
-
- 위협 심각도 분류
|
| 1150 |
-
- **HIGH** : 즉각적 위험
|
| 1151 |
-
- **MEDIUM** : 반입 금지
|
| 1152 |
-
- **LOW** : 추가 검사 필요
|
| 1153 |
-
- 전문 보안 용어 사용
|
| 1154 |
-
- 각 위협 항목별 권장 조치 제시
|
| 1155 |
-
- 보고서에는 분석 결과만 포함하고 날짜/���간 정보는 포함하지 않음
|
| 1156 |
-
|
| 1157 |
-
⚠️ 중대한 사항: 잠재적 위협을 절대 놓치지 마십시오. 의심스러울 경우 반드시 수동 검사를 요청하십시오.""",
|
| 1158 |
-
visible=False # hidden from view
|
| 1159 |
-
)
|
| 1160 |
-
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
max_tokens_slider = gr.Slider(
|
| 1164 |
-
label="Max New Tokens",
|
| 1165 |
-
minimum=100,
|
| 1166 |
-
maximum=8000,
|
| 1167 |
-
step=50,
|
| 1168 |
-
value=1000,
|
| 1169 |
-
visible=False # hidden from view
|
| 1170 |
-
)
|
| 1171 |
-
|
| 1172 |
-
web_search_text = gr.Textbox(
|
| 1173 |
-
lines=1,
|
| 1174 |
-
label="Web Search Query",
|
| 1175 |
-
placeholder="",
|
| 1176 |
-
visible=False # hidden from view
|
| 1177 |
-
)
|
| 1178 |
-
|
| 1179 |
-
# Configure the chat interface
|
| 1180 |
-
chat = gr.ChatInterface(
|
| 1181 |
-
fn=run,
|
| 1182 |
-
type="messages",
|
| 1183 |
-
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
| 1184 |
-
textbox=gr.MultimodalTextbox(
|
| 1185 |
-
file_types=[
|
| 1186 |
-
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
| 1187 |
-
".mp4", ".csv", ".txt", ".pdf"
|
| 1188 |
-
],
|
| 1189 |
-
file_count="multiple",
|
| 1190 |
-
autofocus=True
|
| 1191 |
-
),
|
| 1192 |
-
multimodal=True,
|
| 1193 |
-
additional_inputs=[
|
| 1194 |
-
system_prompt_box,
|
| 1195 |
-
max_tokens_slider,
|
| 1196 |
-
web_search_checkbox,
|
| 1197 |
-
web_search_text,
|
| 1198 |
-
],
|
| 1199 |
-
stop_btn=False,
|
| 1200 |
-
|
| 1201 |
-
run_examples_on_click=False,
|
| 1202 |
-
cache_examples=False,
|
| 1203 |
-
css_paths=None,
|
| 1204 |
-
delete_cache=(1800, 1800),
|
| 1205 |
-
)
|
| 1206 |
-
|
| 1207 |
-
|
| 1208 |
-
|
| 1209 |
|
| 1210 |
if __name__ == "__main__":
|
| 1211 |
-
|
| 1212 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
try:
|
| 8 |
+
# Get the code from secrets
|
| 9 |
+
code = os.environ.get("MAIN_CODE")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
if not code:
|
| 12 |
+
st.error("⚠️ The application code wasn't found in secrets. Please add the MAIN_CODE secret.")
|
| 13 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Create a temporary Python file
|
| 16 |
+
with NamedTemporaryFile(suffix='.py', delete=False, mode='w') as tmp:
|
| 17 |
+
tmp.write(code)
|
| 18 |
+
tmp_path = tmp.name
|
|
|
|
| 19 |
|
| 20 |
+
# Execute the code
|
| 21 |
+
exec(compile(code, tmp_path, 'exec'), globals())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Clean up the temporary file
|
| 24 |
try:
|
| 25 |
+
os.unlink(tmp_path)
|
| 26 |
except:
|
| 27 |
pass
|
| 28 |
+
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"⚠️ Error loading or executing the application: {str(e)}")
|
| 31 |
+
import traceback
|
| 32 |
+
st.code(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
if __name__ == "__main__":
|
| 35 |
+
main()
|
|
|