Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,32 @@
|
|
| 1 |
import re
|
| 2 |
import threading
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
import transformers
|
| 7 |
-
from transformers import pipeline
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
available_models = {
|
| 11 |
-
"meta-llama/Llama-3.2-3B-Instruct": "Llama 3.2(3B)",
|
| 12 |
"Hermes-3-Llama-3.1-8B": "Hermes 3 Llama 3.1 (8B)",
|
| 13 |
"nvidia/Llama-3.1-Nemotron-Nano-8B-v1": "Nvidia Nemotron Nano (8B)",
|
| 14 |
"mistralai/Mistral-Small-3.1-24B-Instruct-2503": "Mistral Small 3.1 (24B)",
|
| 15 |
-
"bartowski/mistralai_Mistral-Small-3.1-24B-Instruct-2503-GGUF": "Mistral Small GGUF (24B)",
|
| 16 |
"google/gemma-3-27b-it": "Google Gemma 3 (27B)",
|
| 17 |
-
"gemma-3-27b-it-abliterated": "Gemma 3 Abliterated (27B)",
|
| 18 |
"Qwen/Qwen2.5-Coder-32B-Instruct": "Qwen 2.5 Coder (32B)",
|
| 19 |
"open-r1/OlympicCoder-32B": "Olympic Coder (32B)"
|
| 20 |
}
|
| 21 |
|
| 22 |
-
#
|
| 23 |
pipe = None
|
|
|
|
| 24 |
|
| 25 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
| 26 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
|
@@ -40,31 +46,69 @@ rethink_prepends = [
|
|
| 40 |
f"\n{ANSWER_MARKER}\n",
|
| 41 |
]
|
| 42 |
|
| 43 |
-
|
| 44 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
| 45 |
latex_delimiters = [
|
| 46 |
{"left": "$$", "right": "$$", "display": True},
|
| 47 |
{"left": "$", "right": "$", "display": False},
|
| 48 |
]
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def reformat_math(text):
|
| 52 |
-
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ .
|
| 53 |
-
์ด๊ฒ์ Gradio์์ ์ํ ๊ณต์์ ํ์ํ๊ธฐ ์ํ ์์ ํด๊ฒฐ์ฑ
์
๋๋ค. ํ์ฌ๋ก์๋
|
| 54 |
-
๋ค๋ฅธ latex_delimiters๋ฅผ ์ฌ์ฉํ์ฌ ์์๋๋ก ์๋ํ๊ฒ ํ๋ ๋ฐฉ๋ฒ์ ์ฐพ์ง ๋ชปํ์ต๋๋ค...
|
| 55 |
-
"""
|
| 56 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
| 57 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
| 58 |
return text
|
| 59 |
|
| 60 |
-
|
| 61 |
def user_input(message, history: list):
|
| 62 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
| 63 |
return "", history + [
|
| 64 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
| 65 |
]
|
| 66 |
|
| 67 |
-
|
| 68 |
def rebuild_messages(history: list):
|
| 69 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
| 70 |
messages = []
|
|
@@ -79,27 +123,68 @@ def rebuild_messages(history: list):
|
|
| 79 |
messages.append({"role": h.role, "content": h.content})
|
| 80 |
return messages
|
| 81 |
|
| 82 |
-
|
| 83 |
def load_model(model_names):
|
| 84 |
-
"""์ ํ๋ ๋ชจ๋ธ ์ด๋ฆ์ ๋ฐ๋ผ ๋ชจ๋ธ ๋ก๋"""
|
| 85 |
-
global pipe
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# ๋ชจ๋ธ์ด ์ ํ๋์ง ์์์ ๊ฒฝ์ฐ ๊ธฐ๋ณธ๊ฐ ์ง์
|
| 88 |
if not model_names:
|
| 89 |
-
model_name = "
|
| 90 |
else:
|
| 91 |
-
# ์ฒซ ๋ฒ์งธ ์ ํ๋ ๋ชจ๋ธ ์ฌ์ฉ
|
| 92 |
model_name = model_names[0]
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
device_map="auto",
|
| 98 |
-
torch_dtype="auto",
|
| 99 |
-
)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
@spaces.GPU
|
| 105 |
def bot(
|
|
@@ -123,9 +208,17 @@ def bot(
|
|
| 123 |
yield history
|
| 124 |
return
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
| 127 |
streamer = transformers.TextIteratorStreamer(
|
| 128 |
-
pipe.tokenizer,
|
| 129 |
skip_special_tokens=True,
|
| 130 |
skip_prompt=True,
|
| 131 |
)
|
|
@@ -144,41 +237,75 @@ def bot(
|
|
| 144 |
|
| 145 |
# ํ์ฌ ์ฑํ
์ ํ์๋ ์ถ๋ก ๊ณผ์
|
| 146 |
messages = rebuild_messages(history)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
yield history
|
| 177 |
-
t.join()
|
| 178 |
|
| 179 |
yield history
|
| 180 |
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Service") as demo:
|
| 183 |
# ์๋จ์ ํ์ดํ๊ณผ ์ค๋ช
์ถ๊ฐ
|
| 184 |
gr.Markdown("""
|
|
@@ -193,6 +320,7 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
| 193 |
scale=1,
|
| 194 |
type="messages",
|
| 195 |
latex_delimiters=latex_delimiters,
|
|
|
|
| 196 |
)
|
| 197 |
msg = gr.Textbox(
|
| 198 |
submit_btn=True,
|
|
@@ -203,49 +331,63 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
| 203 |
)
|
| 204 |
|
| 205 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
| 206 |
# ๋ชจ๋ธ ์ ํ ์น์
์ถ๊ฐ
|
| 207 |
gr.Markdown("""## ๋ชจ๋ธ ์ ํ""")
|
| 208 |
-
model_selector = gr.
|
| 209 |
choices=list(available_models.values()),
|
| 210 |
-
value=
|
| 211 |
-
label="์ฌ์ฉํ LLM ๋ชจ๋ธ ์ ํ
|
| 212 |
)
|
| 213 |
|
| 214 |
# ๋ชจ๋ธ ๋ก๋ ๋ฒํผ
|
| 215 |
-
load_model_btn = gr.Button("๋ชจ๋ธ ๋ก๋")
|
| 216 |
model_status = gr.Textbox(label="๋ชจ๋ธ ์ํ", interactive=False)
|
| 217 |
|
|
|
|
|
|
|
|
|
|
| 218 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
| 237 |
|
| 238 |
# ์ ํ๋ ๋ชจ๋ธ ๋ก๋ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
| 239 |
-
def get_model_names(
|
| 240 |
# ํ์ ์ด๋ฆ์์ ์๋ ๋ชจ๋ธ ์ด๋ฆ์ผ๋ก ๋ณํ
|
| 241 |
inverse_map = {v: k for k, v in available_models.items()}
|
| 242 |
-
return [inverse_map[
|
| 243 |
|
| 244 |
load_model_btn.click(
|
| 245 |
lambda selected: load_model(get_model_names(selected)),
|
| 246 |
inputs=[model_selector],
|
| 247 |
outputs=[model_status]
|
| 248 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
| 251 |
msg.submit(
|
|
@@ -265,4 +407,12 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
| 265 |
)
|
| 266 |
|
| 267 |
if __name__ == "__main__":
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import threading
|
| 3 |
+
import gc
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import transformers
|
| 9 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 10 |
|
| 11 |
+
# ๋ชจ๋ธ ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ๋ฐ ์ต์ ํ๋ฅผ ์ํ ์ค์
|
| 12 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 14 |
+
MAX_GPU_MEMORY = 80 * 1024 * 1024 * 1024 # 80GB A100 ๊ธฐ์ค (์ค์ ์ฌ์ฉ ๊ฐ๋ฅํ ๋ฉ๋ชจ๋ฆฌ๋ ์ด๋ณด๋ค ์ ์)
|
| 15 |
+
|
| 16 |
+
# ์ฌ์ฉ ๊ฐ๋ฅํ ๋ชจ๋ธ ๋ชฉ๋ก - A100์์ ํจ์จ์ ์ผ๋ก ์คํ ๊ฐ๋ฅํ ๋ชจ๋ธ๋ก ํํฐ๋ง
|
| 17 |
available_models = {
|
| 18 |
+
"meta-llama/Llama-3.2-3B-Instruct": "Llama 3.2 (3B)",
|
| 19 |
"Hermes-3-Llama-3.1-8B": "Hermes 3 Llama 3.1 (8B)",
|
| 20 |
"nvidia/Llama-3.1-Nemotron-Nano-8B-v1": "Nvidia Nemotron Nano (8B)",
|
| 21 |
"mistralai/Mistral-Small-3.1-24B-Instruct-2503": "Mistral Small 3.1 (24B)",
|
|
|
|
| 22 |
"google/gemma-3-27b-it": "Google Gemma 3 (27B)",
|
|
|
|
| 23 |
"Qwen/Qwen2.5-Coder-32B-Instruct": "Qwen 2.5 Coder (32B)",
|
| 24 |
"open-r1/OlympicCoder-32B": "Olympic Coder (32B)"
|
| 25 |
}
|
| 26 |
|
| 27 |
+
# ๋ชจ๋ธ ๋ก๋์ ์ฌ์ฉ๋๋ ์ ์ญ ๋ณ์
|
| 28 |
pipe = None
|
| 29 |
+
current_model_name = None
|
| 30 |
|
| 31 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
| 32 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
|
|
|
| 46 |
f"\n{ANSWER_MARKER}\n",
|
| 47 |
]
|
| 48 |
|
|
|
|
| 49 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
| 50 |
latex_delimiters = [
|
| 51 |
{"left": "$$", "right": "$$", "display": True},
|
| 52 |
{"left": "$", "right": "$", "display": False},
|
| 53 |
]
|
| 54 |
|
| 55 |
+
# ๋ชจ๋ธ ํฌ๊ธฐ ๊ธฐ๋ฐ ๊ตฌ์ฑ - ๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ฅธ ์ต์ ์ค์ ์ ์
|
| 56 |
+
MODEL_CONFIG = {
|
| 57 |
+
"small": { # <10B
|
| 58 |
+
"max_memory": {0: "20GiB"},
|
| 59 |
+
"offload": False,
|
| 60 |
+
"quantization": None
|
| 61 |
+
},
|
| 62 |
+
"medium": { # 10B-30B
|
| 63 |
+
"max_memory": {0: "40GiB"},
|
| 64 |
+
"offload": False,
|
| 65 |
+
"quantization": "4bit"
|
| 66 |
+
},
|
| 67 |
+
"large": { # >30B
|
| 68 |
+
"max_memory": {0: "70GiB"},
|
| 69 |
+
"offload": True,
|
| 70 |
+
"quantization": "4bit"
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def get_model_size_category(model_name):
|
| 75 |
+
"""๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ๊ฒฐ์ """
|
| 76 |
+
if "3B" in model_name or "8B" in model_name:
|
| 77 |
+
return "small"
|
| 78 |
+
elif "24B" in model_name or "27B" in model_name:
|
| 79 |
+
return "medium"
|
| 80 |
+
elif "32B" in model_name or "70B" in model_name:
|
| 81 |
+
return "large"
|
| 82 |
+
else:
|
| 83 |
+
# ๊ธฐ๋ณธ๊ฐ์ผ๋ก medium ๋ฐํ
|
| 84 |
+
return "medium"
|
| 85 |
+
|
| 86 |
+
def clear_gpu_memory():
|
| 87 |
+
"""GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ"""
|
| 88 |
+
global pipe
|
| 89 |
+
|
| 90 |
+
if pipe is not None:
|
| 91 |
+
del pipe
|
| 92 |
+
pipe = None
|
| 93 |
+
|
| 94 |
+
# CUDA ์บ์ ์ ๋ฆฌ
|
| 95 |
+
gc.collect()
|
| 96 |
+
if torch.cuda.is_available():
|
| 97 |
+
torch.cuda.empty_cache()
|
| 98 |
+
torch.cuda.synchronize()
|
| 99 |
|
| 100 |
def reformat_math(text):
|
| 101 |
+
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ ."""
|
|
|
|
|
|
|
|
|
|
| 102 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
| 103 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
| 104 |
return text
|
| 105 |
|
|
|
|
| 106 |
def user_input(message, history: list):
|
| 107 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
| 108 |
return "", history + [
|
| 109 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
| 110 |
]
|
| 111 |
|
|
|
|
| 112 |
def rebuild_messages(history: list):
|
| 113 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
| 114 |
messages = []
|
|
|
|
| 123 |
messages.append({"role": h.role, "content": h.content})
|
| 124 |
return messages
|
| 125 |
|
|
|
|
| 126 |
def load_model(model_names):
|
| 127 |
+
"""์ ํ๋ ๋ชจ๋ธ ์ด๋ฆ์ ๋ฐ๋ผ ๋ชจ๋ธ ๋ก๋ (A100์ ์ต์ ํ๋ ์ค์ ์ฌ์ฉ)"""
|
| 128 |
+
global pipe, current_model_name
|
| 129 |
+
|
| 130 |
+
# ๊ธฐ์กด ๋ชจ๋ธ ์ ๋ฆฌ
|
| 131 |
+
clear_gpu_memory()
|
| 132 |
|
| 133 |
# ๋ชจ๋ธ์ด ์ ํ๋์ง ์์์ ๊ฒฝ์ฐ ๊ธฐ๋ณธ๊ฐ ์ง์
|
| 134 |
if not model_names:
|
| 135 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct" # ๋ ์์ ๋ชจ๋ธ์ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ฌ์ฉ
|
| 136 |
else:
|
| 137 |
+
# ์ฒซ ๋ฒ์งธ ์ ํ๋ ๋ชจ๋ธ ์ฌ์ฉ
|
| 138 |
model_name = model_names[0]
|
| 139 |
|
| 140 |
+
# ๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ํ์ธ
|
| 141 |
+
size_category = get_model_size_category(model_name)
|
| 142 |
+
config = MODEL_CONFIG[size_category]
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# ๋ชจ๋ธ ๋ก๋ (ํฌ๊ธฐ์ ๋ฐ๋ผ ์ต์ ํ๋ ์ค์ ์ ์ฉ)
|
| 145 |
+
try:
|
| 146 |
+
# BF16 ์ ๋ฐ๋ ์ฌ์ฉ (A100์ ์ต์ ํ)
|
| 147 |
+
if config["quantization"]:
|
| 148 |
+
# ์์ํ ์ ์ฉ
|
| 149 |
+
from transformers import BitsAndBytesConfig
|
| 150 |
+
quantization_config = BitsAndBytesConfig(
|
| 151 |
+
load_in_4bit=config["quantization"] == "4bit",
|
| 152 |
+
bnb_4bit_compute_dtype=DTYPE
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 156 |
+
model_name,
|
| 157 |
+
device_map="auto",
|
| 158 |
+
max_memory=config["max_memory"],
|
| 159 |
+
torch_dtype=DTYPE,
|
| 160 |
+
quantization_config=quantization_config if config["quantization"] else None,
|
| 161 |
+
offload_folder="offload" if config["offload"] else None,
|
| 162 |
+
trust_remote_code=True
|
| 163 |
+
)
|
| 164 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 165 |
+
|
| 166 |
+
pipe = pipeline(
|
| 167 |
+
"text-generation",
|
| 168 |
+
model=model,
|
| 169 |
+
tokenizer=tokenizer,
|
| 170 |
+
torch_dtype=DTYPE,
|
| 171 |
+
device_map="auto"
|
| 172 |
+
)
|
| 173 |
+
else:
|
| 174 |
+
# ์์ํ ์์ด ๋ก๋
|
| 175 |
+
pipe = pipeline(
|
| 176 |
+
"text-generation",
|
| 177 |
+
model=model_name,
|
| 178 |
+
device_map="auto",
|
| 179 |
+
torch_dtype=DTYPE,
|
| 180 |
+
trust_remote_code=True
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
current_model_name = model_name
|
| 184 |
+
return f"๋ชจ๋ธ '{model_name}'์ด(๊ฐ) ์ฑ๊ณต์ ์ผ๋ก ๋ก๋๋์์ต๋๋ค. (์ต์ ํ: {size_category} ์นดํ
๊ณ ๋ฆฌ)"
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return f"๋ชจ๋ธ ๋ก๋ ์คํจ: {str(e)}"
|
| 188 |
|
| 189 |
@spaces.GPU
|
| 190 |
def bot(
|
|
|
|
| 208 |
yield history
|
| 209 |
return
|
| 210 |
|
| 211 |
+
# ํ ํฐ ๊ธธ์ด ์๋ ์กฐ์ (๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ผ)
|
| 212 |
+
size_category = get_model_size_category(current_model_name)
|
| 213 |
+
|
| 214 |
+
# ๋ํ ๋ชจ๋ธ์ ํ ํฐ ์๋ฅผ ์ค์ฌ ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ฑ ํฅ์
|
| 215 |
+
if size_category == "large":
|
| 216 |
+
max_num_tokens = min(max_num_tokens, 1000)
|
| 217 |
+
final_num_tokens = min(final_num_tokens, 1500)
|
| 218 |
+
|
| 219 |
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
| 220 |
streamer = transformers.TextIteratorStreamer(
|
| 221 |
+
pipe.tokenizer,
|
| 222 |
skip_special_tokens=True,
|
| 223 |
skip_prompt=True,
|
| 224 |
)
|
|
|
|
| 237 |
|
| 238 |
# ํ์ฌ ์ฑํ
์ ํ์๋ ์ถ๋ก ๊ณผ์
|
| 239 |
messages = rebuild_messages(history)
|
| 240 |
+
|
| 241 |
+
try:
|
| 242 |
+
for i, prepend in enumerate(rethink_prepends):
|
| 243 |
+
if i > 0:
|
| 244 |
+
messages[-1]["content"] += "\n\n"
|
| 245 |
+
messages[-1]["content"] += prepend.format(question=question)
|
| 246 |
|
| 247 |
+
num_tokens = int(
|
| 248 |
+
max_num_tokens if ANSWER_MARKER not in prepend else final_num_tokens
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# ์ค๋ ๋์์ ๋ชจ๋ธ ์คํ
|
| 252 |
+
t = threading.Thread(
|
| 253 |
+
target=pipe,
|
| 254 |
+
args=(messages,),
|
| 255 |
+
kwargs=dict(
|
| 256 |
+
max_new_tokens=num_tokens,
|
| 257 |
+
streamer=streamer,
|
| 258 |
+
do_sample=do_sample,
|
| 259 |
+
temperature=temperature,
|
| 260 |
+
# ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ฑ์ ์ํ ์ถ๊ฐ ํ๋ผ๋ฏธํฐ
|
| 261 |
+
repetition_penalty=1.2, # ๋ฐ๋ณต ๋ฐฉ์ง
|
| 262 |
+
use_cache=True, # KV ์บ์ ์ฌ์ฉ
|
| 263 |
+
),
|
| 264 |
+
)
|
| 265 |
+
t.start()
|
| 266 |
|
| 267 |
+
# ์ ๋ด์ฉ์ผ๋ก ํ์คํ ๋ฆฌ ์ฌ๊ตฌ์ฑ
|
| 268 |
+
history[-1].content += prepend.format(question=question)
|
| 269 |
+
if ANSWER_MARKER in prepend:
|
| 270 |
+
history[-1].metadata = {"title": "๐ญ ์ฌ๊ณ ๊ณผ์ ", "status": "done"}
|
| 271 |
+
# ์๊ฐ ์ข
๋ฃ, ์ด์ ๋ต๋ณ์
๋๋ค (์ค๊ฐ ๋จ๊ณ์ ๋ํ ๋ฉํ๋ฐ์ดํฐ ์์)
|
| 272 |
+
history.append(gr.ChatMessage(role="assistant", content=""))
|
| 273 |
+
|
| 274 |
+
# ํ ํฐ ์คํธ๋ฆฌ๋ฐ
|
| 275 |
+
for token in streamer:
|
| 276 |
+
history[-1].content += token
|
| 277 |
+
history[-1].content = reformat_math(history[-1].content)
|
| 278 |
+
yield history
|
| 279 |
+
|
| 280 |
+
t.join()
|
| 281 |
+
|
| 282 |
+
# ๋ํ ๋ชจ๋ธ์ธ ๊ฒฝ์ฐ ๊ฐ ๋จ๊ณ ํ ๋ถ๋ถ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 283 |
+
if size_category == "large" and torch.cuda.is_available():
|
| 284 |
+
torch.cuda.empty_cache()
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
# ์ค๋ฅ ๋ฐ์์ ์ฌ์ฉ์์๊ฒ ์๋ฆผ
|
| 288 |
+
if len(history) > 0 and history[-1].role == "assistant":
|
| 289 |
+
history[-1].content += f"\n\nโ ๏ธ ์ฒ๋ฆฌ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
| 290 |
yield history
|
|
|
|
| 291 |
|
| 292 |
yield history
|
| 293 |
|
| 294 |
|
| 295 |
+
# ์ฌ์ฉ ๊ฐ๋ฅํ GPU ์ ๋ณด ํ์ ํจ์
|
| 296 |
+
def get_gpu_info():
|
| 297 |
+
if not torch.cuda.is_available():
|
| 298 |
+
return "GPU๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค."
|
| 299 |
+
|
| 300 |
+
gpu_info = []
|
| 301 |
+
for i in range(torch.cuda.device_count()):
|
| 302 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 303 |
+
total_memory = torch.cuda.get_device_properties(i).total_memory / 1024**3
|
| 304 |
+
gpu_info.append(f"GPU {i}: {gpu_name} ({total_memory:.1f} GB)")
|
| 305 |
+
|
| 306 |
+
return "\n".join(gpu_info)
|
| 307 |
+
|
| 308 |
+
# Gradio ์ธํฐํ์ด์ค
|
| 309 |
with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Service") as demo:
|
| 310 |
# ์๋จ์ ํ์ดํ๊ณผ ์ค๋ช
์ถ๊ฐ
|
| 311 |
gr.Markdown("""
|
|
|
|
| 320 |
scale=1,
|
| 321 |
type="messages",
|
| 322 |
latex_delimiters=latex_delimiters,
|
| 323 |
+
height=600,
|
| 324 |
)
|
| 325 |
msg = gr.Textbox(
|
| 326 |
submit_btn=True,
|
|
|
|
| 331 |
)
|
| 332 |
|
| 333 |
with gr.Column(scale=1):
|
| 334 |
+
# ํ๋์จ์ด ์ ๋ณด ํ์
|
| 335 |
+
gpu_info = gr.Markdown(f"**์ฌ์ฉ ๊ฐ๋ฅํ ํ๋์จ์ด:**\n{get_gpu_info()}")
|
| 336 |
+
|
| 337 |
# ๋ชจ๋ธ ์ ํ ์น์
์ถ๊ฐ
|
| 338 |
gr.Markdown("""## ๋ชจ๋ธ ์ ํ""")
|
| 339 |
+
model_selector = gr.Radio(
|
| 340 |
choices=list(available_models.values()),
|
| 341 |
+
value=available_models["meta-llama/Llama-3.2-3B-Instruct"], # ์์ ๋ชจ๋ธ์ ๊ธฐ๋ณธ๊ฐ์ผ๋ก
|
| 342 |
+
label="์ฌ์ฉํ LLM ๋ชจ๋ธ ์ ํ",
|
| 343 |
)
|
| 344 |
|
| 345 |
# ๋ชจ๋ธ ๋ก๋ ๋ฒํผ
|
| 346 |
+
load_model_btn = gr.Button("๋ชจ๋ธ ๋ก๋", variant="primary")
|
| 347 |
model_status = gr.Textbox(label="๋ชจ๋ธ ์ํ", interactive=False)
|
| 348 |
|
| 349 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฒํผ
|
| 350 |
+
clear_memory_btn = gr.Button("GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ", variant="secondary")
|
| 351 |
+
|
| 352 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
| 353 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
| 354 |
+
num_tokens = gr.Slider(
|
| 355 |
+
50,
|
| 356 |
+
2000,
|
| 357 |
+
1000, # ๊ธฐ๋ณธ๊ฐ ์ถ์
|
| 358 |
+
step=50,
|
| 359 |
+
label="์ถ๋ก ๋จ๊ณ๋น ์ต๋ ํ ํฐ ์",
|
| 360 |
+
interactive=True,
|
| 361 |
+
)
|
| 362 |
+
final_num_tokens = gr.Slider(
|
| 363 |
+
50,
|
| 364 |
+
3000,
|
| 365 |
+
1500, # ๊ธฐ๋ณธ๊ฐ ์ถ์
|
| 366 |
+
step=50,
|
| 367 |
+
label="์ต์ข
๋ต๋ณ์ ์ต๋ ํ ํฐ ์",
|
| 368 |
+
interactive=True,
|
| 369 |
+
)
|
| 370 |
+
do_sample = gr.Checkbox(True, label="์ํ๋ง ์ฌ์ฉ")
|
| 371 |
+
temperature = gr.Slider(0.1, 1.0, 0.7, step=0.1, label="์จ๋")
|
| 372 |
|
| 373 |
# ์ ํ๋ ๋ชจ๋ธ ๋ก๋ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
| 374 |
+
def get_model_names(selected_model):
|
| 375 |
# ํ์ ์ด๋ฆ์์ ์๋ ๋ชจ๋ธ ์ด๋ฆ์ผ๋ก ๋ณํ
|
| 376 |
inverse_map = {v: k for k, v in available_models.items()}
|
| 377 |
+
return [inverse_map[selected_model]] if selected_model else []
|
| 378 |
|
| 379 |
load_model_btn.click(
|
| 380 |
lambda selected: load_model(get_model_names(selected)),
|
| 381 |
inputs=[model_selector],
|
| 382 |
outputs=[model_status]
|
| 383 |
)
|
| 384 |
+
|
| 385 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
| 386 |
+
clear_memory_btn.click(
|
| 387 |
+
lambda: (clear_gpu_memory(), "GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ์ ๋ฆฌ๋์์ต๋๋ค."),
|
| 388 |
+
inputs=[],
|
| 389 |
+
outputs=[model_status]
|
| 390 |
+
)
|
| 391 |
|
| 392 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
| 393 |
msg.submit(
|
|
|
|
| 407 |
)
|
| 408 |
|
| 409 |
if __name__ == "__main__":
|
| 410 |
+
# ๋๋ฒ๊น
์ ๋ณด ์ถ๋ ฅ
|
| 411 |
+
print(f"GPU ์ฌ์ฉ ๊ฐ๋ฅ: {torch.cuda.is_available()}")
|
| 412 |
+
if torch.cuda.is_available():
|
| 413 |
+
print(f"์ฌ์ฉ ๊ฐ๋ฅํ GPU ๊ฐ์: {torch.cuda.device_count()}")
|
| 414 |
+
print(f"ํ์ฌ GPU: {torch.cuda.current_device()}")
|
| 415 |
+
print(f"GPU ์ด๋ฆ: {torch.cuda.get_device_name(0)}")
|
| 416 |
+
|
| 417 |
+
# ํ ์ฌ์ฉ ๋ฐ ์ฑ ์คํ
|
| 418 |
+
demo.queue(max_size=10).launch()
|