import time import gradio as gr import torch from einops import rearrange, repeat from PIL import Image import numpy as np from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack from flux.util import ( SamplingOptions, load_ae, load_clip, load_flow_model, load_t5, ) from pulid.pipeline_flux import PuLIDPipeline from pulid.utils import resize_numpy_image_long, seed_everything # 간단한 인용 정보 추가 _CITE_ = """PuLID: Person-under-Language Image Diffusion Model""" # GPU 사용 가능 여부 확인 및 장치 설정 def get_device(): if torch.cuda.is_available(): return torch.device('cuda') else: print("CUDA GPU를 찾을 수 없습니다. CPU를 사용합니다.") return torch.device('cpu') def get_models(name: str, device, offload: bool): print(f"모델을 {device}에 로드합니다.") t5 = load_t5(device, max_length=128) clip_model = load_clip(device) model = load_flow_model(name, device="cpu" if offload else device) model.eval() ae = load_ae(name, device="cpu" if offload else device) return model, ae, t5, clip_model class FluxGenerator: def __init__(self): # GPU 사용 가능 여부에 따라 장치 설정 self.device = get_device() self.offload = False self.model_name = 'flux-dev' # 모델 로드 시도 try: self.model, self.ae, self.t5, self.clip_model = get_models( self.model_name, device=self.device, offload=self.offload, ) self.pulid_model = PuLIDPipeline( self.model, 'cuda' if torch.cuda.is_available() else 'cpu', weight_dtype=torch.bfloat16 if self.device.type == 'cuda' else torch.float32 ) self.pulid_model.load_pretrain() self.initialized = True except Exception as e: print(f"모델 초기화 중 오류 발생: {e}") self.initialized = False # 모델 초기화 시도 try: flux_generator = FluxGenerator() model_initialized = flux_generator.initialized except Exception as e: print(f"FluxGenerator 초기화 중 오류 발생: {e}") model_initialized = False @torch.inference_mode() def generate_image( prompt: str, id_image = None, width: int = 512, height: int = 512, num_steps: int = 20, start_step: int = 0, guidance: float = 4.0, seed: int = -1, id_weight: float = 1.0, neg_prompt: str = "", true_cfg: float = 1.0, timestep_to_start_cfg: int = 1, max_sequence_length: int = 128, gamma: float = 0.5, eta: float = 0.7, s: float = 0, tau: float = 5, ): # 모델이 초기화되지 않았으면 오류 메시지 반환 if not model_initialized: return None, "GPU 오류: CUDA GPU를 찾을 수 없어 모델을 초기화할 수 없습니다.", None # ID 이미지가 없으면 실행 불가 if id_image is None: return None, "오류: ID 이미지가 필요합니다.", None try: flux_generator.t5.max_length = max_sequence_length # 시드 설정 seed = int(seed) if seed == -1: seed = None opts = SamplingOptions( prompt=prompt, width=width, height=height, num_steps=num_steps, guidance=guidance, seed=seed, ) if opts.seed is None: opts.seed = torch.Generator(device="cpu").seed() seed_everything(opts.seed) print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...") t0 = time.perf_counter() use_true_cfg = abs(true_cfg - 1.0) > 1e-6 # 1) 입력 노이즈 준비 noise = get_noise( num_samples=1, height=opts.height, width=opts.width, device=flux_generator.device, dtype=torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32, seed=opts.seed, ) bs, c, h, w = noise.shape noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if noise.shape[0] == 1 and bs > 1: noise = repeat(noise, "1 ... -> bs ...", bs=bs) # ID 이미지 인코딩 encode_t0 = time.perf_counter() id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS) x = torch.from_numpy(np.array(id_image).astype(np.float32)) x = (x / 127.5) - 1.0 x = rearrange(x, "h w c -> 1 c h w") x = x.to(flux_generator.device) dtype = torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32 with torch.autocast(device_type=flux_generator.device.type, dtype=dtype): x = flux_generator.ae.encode(x) x = x.to(dtype) encode_t1 = time.perf_counter() print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.") timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False) # 2) 텍스트 임베딩 준비 inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt) inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="") inp_neg = None if use_true_cfg: inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt) # 3) ID 임베딩 생성 id_embeddings = None uncond_id_embeddings = None if id_image is not None: id_image = np.array(id_image) id_image = resize_numpy_image_long(id_image, 1024) id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg) y_0 = inp["img"].clone().detach() # 이미지 처리 과정 inverted = rf_inversion( flux_generator.model, **inp_inversion, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, aggressive_offload=False, y_1=noise, gamma=gamma ) inp["img"] = inverted inp_inversion["img"] = inverted edited = rf_denoise( flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, aggressive_offload=False, y_0=y_0, eta=eta, s=s, tau=tau, ) # 결과 이미지 디코딩 edited = unpack(edited.float(), opts.height, opts.width) with torch.autocast(device_type=flux_generator.device.type, dtype=dtype): edited = flux_generator.ae.decode(edited) t1 = time.perf_counter() print(f"Done in {t1 - t0:.2f} seconds.") # PIL 이미지로 변환 edited = edited.clamp(-1, 1) edited = rearrange(edited[0], "c h w -> h w c") edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy()) return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list except Exception as e: import traceback error_msg = f"이미지 생성 중 오류 발생: {str(e)}\n{traceback.format_exc()}" print(error_msg) return None, error_msg, None def create_demo(): with gr.Blocks() as demo: gr.Markdown("# PuLID: 인물 이미지 변환 도구") if not model_initialized: gr.Markdown("## ⚠️ 오류: CUDA GPU를 찾을 수 없습니다") gr.Markdown("이 응용 프로그램은 CUDA 지원 GPU가 필요합니다. CPU에서는 실행할 수 없습니다.") return demo with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="프롬프트", value="portrait, color, cinematic") id_image = gr.Image(label="ID 이미지", type="pil") id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="ID 가중치") num_steps = gr.Slider(1, 24, 16, step=1, label="단계 수") guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="가이던스") with gr.Accordion("고급 옵션", open=False): neg_prompt = gr.Textbox(label="네거티브 프롬프트", value="") true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="CFG 스케일") seed = gr.Textbox(-1, label="시드 (-1: 랜덤)") gr.Markdown("### 기타 옵션") gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="감마") eta = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="에타") generate_btn = gr.Button("이미지 생성") with gr.Column(): output_image = gr.Image(label="생성된 이미지") seed_output = gr.Textbox(label="결과/오류 메시지") gr.Markdown(_CITE_) generate_btn.click( fn=generate_image, inputs=[prompt, id_image, 512, 512, num_steps, 0, guidance, seed, id_weight, neg_prompt, true_cfg, 1, 128, gamma, eta, 0, 5], outputs=[output_image, seed_output], ) return demo if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev") parser.add_argument('--version', type=str, default='v0.9.1') parser.add_argument("--name", type=str, default="flux-dev") parser.add_argument("--port", type=int, default=8080) args = parser.parse_args() demo = create_demo() demo.launch(ssr_mode=False)