from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders.csv_loader import CSVLoader from langchain.vectorstores import FAISS import tempfile from streamlit_chat import message import streamlit as st import nltk from nltk.sentiment import SentimentIntensityAnalyzer def get_sentiment(text): sid = SentimentIntensityAnalyzer() sentiment_scores = sid.polarity_scores(text) compound_score = sentiment_scores['compound'] if compound_score >= 0.05: return 'positive' elif compound_score <= -0.05: return 'negative' else: return 'neutral' def add_sentiment_emoji(text, sentiment): emoji_mapping = { 'positive': '😄', 'negative': '😞', 'neutral': '😐' } emoji = emoji_mapping.get(sentiment, '') return f"{text} {emoji}" import os import sys import pandas as pd def conversational_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] user_api_key = st.sidebar.text_input( label="#### Your OpenAI API key 👇", placeholder="Paste your openAI API key, sk-", type="password") if user_api_key is not None and user_api_key.strip() != "": os.environ["OPENAI_API_KEY"] =user_api_key file_path='./personality_less.csv' loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={ 'delimiter': ','}) data = loader.load() embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(data, embeddings) chain = ConversationalRetrievalChain.from_llm( llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo'), retriever=vectorstore.as_retriever()) if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello ! Ask me anything about " + " 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey ! 👋"] #container for the chat history response_container = st.container() #container for the user's text input container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Query:", placeholder="Talk about your csv data here (:", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversational_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with response_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile") message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs") else: st.text("Please enter your OpenAI API key above.")