Spaces:
Running
Running
File size: 7,901 Bytes
f14ce12 67fc626 b84a19d a6bc7c7 67fc626 a6bc7c7 67fc626 a6bc7c7 67fc626 a6bc7c7 f14ce12 95037a7 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 67fc626 f88f2c2 04d1675 67fc626 04d1675 f88f2c2 67fc626 f14ce12 67fc626 04d1675 67fc626 04d1675 f14ce12 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 67fc626 04d1675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# baldhead.py
import os
import cv2
import numpy as np
from PIL import Image
import tensorflow as tf
import gradio as gr
# Keras imports (note: keras-contrib must be installed)
import keras.backend as K
from keras.layers import (
Input,
Conv2D,
UpSampling2D,
LeakyReLU,
GlobalAveragePooling2D,
Dense,
Reshape,
Dropout,
Concatenate,
multiply, # ← Thêm import multiply
)
from keras.models import Model
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
# RetinaFace + skimage for face alignment
from retinaface import RetinaFace
from skimage import transform as trans
# Hugging Face Hub helper
from huggingface_hub import hf_hub_download
# --- Face‐alignment helpers (giống code gốc) ---
image_size = [256, 256]
src_landmarks = np.array([
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041],
], dtype=np.float32)
src_landmarks[:, 0] += 8.0
src_landmarks[:, 0] += 15.0
src_landmarks[:, 1] += 30.0
src_landmarks /= 112
src_landmarks *= 200
def list2array(values):
return np.array(list(values))
def align_face(img: np.ndarray):
"""
Detect faces + landmarks in `img` via RetinaFace.
Returns lists of aligned face patches (256×256 RGB),
corresponding binary masks, and the transformation matrices.
"""
faces = RetinaFace.detect_faces(img)
bboxes = np.array([list2array(faces[f]['facial_area']) for f in faces])
landmarks = np.array([list2array(faces[f]['landmarks'].values()) for f in faces])
white_canvas = np.ones(img.shape, dtype=np.uint8) * 255
aligned_faces, masks, matrices = [], [], []
if bboxes.shape[0] > 0:
for i in range(bboxes.shape[0]):
dst = landmarks[i] # detected landmarks
tform = trans.SimilarityTransform()
tform.estimate(dst, src_landmarks)
M = tform.params[0:2, :]
warped_face = cv2.warpAffine(
img, M, (image_size[1], image_size[0]), borderValue=0.0
)
warped_mask = cv2.warpAffine(
white_canvas, M, (image_size[1], image_size[0]), borderValue=0.0
)
aligned_faces.append(warped_face)
masks.append(warped_mask)
matrices.append(tform.params[0:3, :])
return aligned_faces, masks, matrices
def put_face_back(
orig_img: np.ndarray,
processed_faces: list[np.ndarray],
masks: list[np.ndarray],
matrices: list[np.ndarray],
):
"""
Warp each processed face back onto the original `orig_img`
using the inverse of the transformation matrices.
"""
result = orig_img.copy()
h, w = orig_img.shape[:2]
for i in range(len(processed_faces)):
invM = np.linalg.inv(matrices[i])[0:2]
warped = cv2.warpAffine(processed_faces[i], invM, (w, h), borderValue=0.0)
mask = cv2.warpAffine(masks[i], invM, (w, h), borderValue=0.0)
binary_mask = (mask // 255).astype(np.uint8)
# Composite: result = result * (1 - mask) + warped * mask
result = result * (1 - binary_mask)
result = result.astype(np.uint8)
result = result + warped * binary_mask
return result
# ----------------------------
# 2. GENERATOR ARCHITECTURE
# ----------------------------
def squeeze_excite_block(x, ratio=4):
"""
Squeeze-and-Excitation block: channel-wise attention.
"""
init = x
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
filters = init.shape[channel_axis]
se_shape = (1, 1, filters)
se = GlobalAveragePooling2D()(init)
se = Reshape(se_shape)(se)
se = Dense(filters // ratio, activation="relu", kernel_initializer="he_normal", use_bias=False)(se)
se = Dense(filters, activation="sigmoid", kernel_initializer="he_normal", use_bias=False)(se)
return multiply([init, se])
def conv2d(layer_input, filters, f_size=4, bn=True, se=False):
"""
Downsampling block: Conv2D → LeakyReLU → (InstanceNorm) → (SE block)
"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding="same")(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = InstanceNormalization()(d)
if se:
d = squeeze_excite_block(d)
return d
def atrous(layer_input, filters, f_size=4, bn=True):
"""
Atrous (dilated) convolution block with dilation rates [2,4,8].
"""
a_list = []
for rate in [2, 4, 8]:
a = Conv2D(filters, f_size, dilation_rate=rate, padding="same")(layer_input)
a_list.append(a)
a = Concatenate()(a_list)
a = LeakyReLU(alpha=0.2)(a)
if bn:
a = InstanceNormalization()(a)
return a
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""
Upsampling block: UpSampling2D → Conv2D → (Dropout) → InstanceNorm → Concatenate(skip)
"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding="same", activation="relu")(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = InstanceNormalization()(u)
u = Concatenate()([u, skip_input])
return u
def build_generator():
"""
Reconstruct the generator architecture exactly as in the notebook,
then return a Keras Model object.
"""
d0 = Input(shape=(256, 256, 3))
gf = 64
# Downsampling
d1 = conv2d(d0, gf, bn=False, se=True)
d2 = conv2d(d1, gf * 2, se=True)
d3 = conv2d(d2, gf * 4, se=True)
d4 = conv2d(d3, gf * 8)
d5 = conv2d(d4, gf * 8)
# Atrous block
a1 = atrous(d5, gf * 8)
# Upsampling
u3 = deconv2d(a1, d4, gf * 8)
u4 = deconv2d(u3, d3, gf * 4)
u5 = deconv2d(u4, d2, gf * 2)
u6 = deconv2d(u5, d1, gf)
# Final upsample + conv
u7 = UpSampling2D(size=2)(u6)
output_img = Conv2D(3, kernel_size=4, strides=1, padding="same", activation="tanh")(u7)
model = Model(d0, output_img)
return model
# ----------------------------
# 3. LOAD MODEL WEIGHTS
# ----------------------------
HF_REPO_ID = "VanNguyen1214/baldhead"
HF_FILENAME = "model_G_5_170.hdf5"
HF_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
def load_generator_from_hub():
"""
Download the .hdf5 weights from HF Hub into cache,
rebuild the generator, then load weights.
"""
local_path = hf_hub_download(repo_id=HF_REPO_ID, filename=HF_FILENAME,token=HF_TOKEN)
gen = build_generator()
gen.load_weights(local_path)
return gen
# Load once at startup
try:
GENERATOR = load_generator_from_hub()
print(f"[INFO] Loaded generator weights from {HF_REPO_ID}/{HF_FILENAME}")
except Exception as e:
print("[ERROR] Could not load generator:", e)
GENERATOR = None
# ----------------------------
# 4. INFERENCE FUNCTION
# ----------------------------
def inference(image: Image.Image) -> Image.Image:
"""
Gradio-compatible inference function:
- Convert PIL→ numpy RGB
- Align faces
- For each face: normalize to [-1,1], run through generator, denormalize to uint8
- Put processed faces back onto original image
- Return full-image PIL
"""
if GENERATOR is None:
return image
orig = np.array(image.convert("RGB"))
faces, masks, mats = align_face(orig)
if len(faces) == 0:
return image
processed_faces = []
for face in faces:
face_input = face.astype(np.float32)
face_input = (face_input / 127.5) - 1.0 # scale to [-1,1]
face_input = np.expand_dims(face_input, axis=0) # (1,256,256,3)
pred = GENERATOR.predict(face_input)[0] # (256,256,3) in [-1,1]
pred = ((pred + 1.0) * 127.5).astype(np.uint8)
processed_faces.append(pred)
output_np = put_face_back(orig, processed_faces, masks, mats)
output_pil = Image.fromarray(output_np)
return output_pil
|