Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
model_name = "DAMO-NLP-SG/VideoLLaMA3-7B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
model.eval() | |
def generate_response(prompt, max_tokens=200, temperature=0.7): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
do_sample=True, | |
top_p=0.9, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response[len(prompt):].strip() # Return only the generated part | |
# Gradio UI | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Prompt", lines=5, placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=50, maximum=1000, value=200, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="VideoLLaMA3-7B Text Generation", | |
description="Generate text using DAMO-NLP-SG/VideoLLaMA3-7B" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |