Spaces:
Sleeping
Sleeping
from sentence_transformers import SentenceTransformer | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.metrics import accuracy_score, classification_report | |
import numpy as np | |
import os | |
import sys | |
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src")) | |
sys.path.append(src_directory) | |
from data import sample_data | |
file_path = r"src/data/sms_process_data_main.xlsx" | |
df = sample_data.get_data_frame(file_path) | |
def get_label(message): | |
X_train, X_test, y_train, y_test = train_test_split(df['MessageText'], df['label'], test_size=0.2, random_state=42) | |
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) | |
X_train_embeddings = model.encode(X_train.tolist()) | |
models = LogisticRegression(max_iter=100) | |
models.fit(X_train_embeddings, y_train) | |
new_embeddings = model.encode(message) | |
no_of_dimention = len(new_embeddings) | |
array = np.array(new_embeddings).tolist() | |
# new_predictions = models.predict(new_embeddings) | |
dimention = pd.DataFrame(array,columns=["Dimention"]) | |
return {"Prediction_Dimention":{no_of_dimention: dimention}} | |