# import pandas as pd # from sklearn.model_selection import train_test_split # from sklearn.linear_model import LogisticRegression # from sklearn.metrics import accuracy_score, classification_report # import numpy as np # import os # import sys # src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src")) # sys.path.append(src_directory) # from data import sample_data # from modules import encoding_model # file_path = r"src/data/sms_process_data_main.xlsx" # df = sample_data.get_data_frame(file_path) # def get_label(message): # from sentence_transformers import SentenceTransformer # # model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) # X_train, X_test, y_train, y_test = train_test_split(df['MessageText'], df['label'], test_size=0.2, random_state=42) # X_train_embeddings = encoding_model.model.encode(X_train.tolist()) # models = LogisticRegression(max_iter=100) # models.fit(X_train_embeddings, y_train) # new_embeddings = encoding_model.model.encode(message) # no_of_dimention = len(new_embeddings) # array = np.array(new_embeddings).tolist() # # new_predictions = models.predict(new_embeddings) # dimention = pd.DataFrame(array,columns=["Dimention"]) # return {"Prediction_Dimention":{no_of_dimention: dimention}} # def create_embending(message:str): # embending_message = encoding_model.model.encode(message) # result = np.array(embending_message).tolist() # return result