mcp_hf_pr_agent / app.py
VenkatesaPerumal's picture
fixed webhook route
a0df324
# ----------------------------------------------------------------------------------
# 1. Agent Configuration
# ----------------------------------------------------------------------------------
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from fastapi.responses import RedirectResponse
from huggingface_hub.inference._mcp.agent import Agent
from dotenv import load_dotenv
load_dotenv()
HF_TOKEN=os.getenv("HF_TOKEN")
WEBHOOK_SECRET=os.getenv("WEBHOOK_SECRET")
HF_MODEL=os.getenv("HF_MODEL","HuggingFaceH4/zephyr-7b-beta")
DEFAULT_PROVIDER:Literal['hf-inference']="hf-inference"
HF_PROVIDER=os.getenv("HF_PROVIDER")
agent_instance: Optional[Agent]=None
tag_operations_store:List[Dict[str,Any]]=[]
RECOGNIZED_TAGS = {
"pytorch",
"tensorflow",
"jax",
"transformers",
"diffusers",
"text-generation",
"text-classification",
"question-answering",
"text-to-image",
"image-classification",
"object-detection",
" ",
"fill-mask",
"token-classification",
"translation",
"summarization",
"feature-extraction",
"sentence-similarity",
"zero-shot-classification",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"voice-activity-detection",
"depth-estimation",
"image-segmentation",
"video-classification",
"reinforcement-learning",
"tabular-classification",
"tabular-regression",
"time-series-forecasting",
"graph-ml",
"robotics",
"computer-vision",
"nlp",
"cv",
"multimodal",
}
class WebhookEvent(BaseModel):
event: Dict[str, str]
comment: Dict[str, Any]
discussion: Dict[str, Any]
repo: Dict[str, str]
app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])
async def get_agent():
"""Get or create Agent instance"""
print("πŸ€– get_agent() called...")
global agent_instance
if agent_instance is None and HF_TOKEN:
print("πŸ”§ Creating new Agent instance...")
print(f"πŸ”‘ HF_TOKEN present: {bool(HF_TOKEN)}")
print(f"πŸ€– Model: {HF_MODEL}")
print(f"πŸ”— Provider: {DEFAULT_PROVIDER}")
try:
agent_instance = Agent(
model=HF_MODEL,
provider=DEFAULT_PROVIDER,
api_key=HF_TOKEN,
servers=[
{
"type": "stdio",
"command": "python",
"args": ["mcp_server.py"],
"cwd": ".",
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
}
],
)
print("βœ… Agent instance created successfully")
print("πŸ”§ Loading tools...")
await agent_instance.load_tools()
print("βœ… Tools loaded successfully")
except Exception as e:
print(f"❌ Error creating/loading agent: {str(e)}")
agent_instance = None
elif agent_instance is None:
print("❌ No HF_TOKEN available, cannot create agent")
else:
print("βœ… Using existing agent instance")
return agent_instance
def extract_tags_from_text(text: str) -> List[str]:
"""Extract potential tags from discussion text"""
text_lower = text.lower()
explicit_tags = []
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
matches = re.findall(tag_pattern, text_lower)
for match in matches:
tags = [tag.strip() for tag in match.split(",")]
explicit_tags.extend(tags)
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
hashtag_matches = re.findall(hashtag_pattern, text_lower)
explicit_tags.extend(hashtag_matches)
mentioned_tags = []
for tag in RECOGNIZED_TAGS:
if tag in text_lower:
mentioned_tags.append(tag)
all_tags = list(set(explicit_tags + mentioned_tags))
valid_tags = []
for tag in all_tags:
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
valid_tags.append(tag)
return valid_tags
async def process_webhook_comment(webhook_data: Dict[str, Any]):
"""Process webhook to detect and add tags"""
print("🏷️ Starting process_webhook_comment...")
try:
comment_content = webhook_data["comment"]["content"]
discussion_title = webhook_data["discussion"]["title"]
repo_name = webhook_data["repo"]["name"]
discussion_num = webhook_data["discussion"]["num"]
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
print(f"πŸ“ Comment content: {comment_content}")
print(f"πŸ“° Discussion title: {discussion_title}")
print(f"πŸ“¦ Repository: {repo_name}")
comment_tags = extract_tags_from_text(comment_content)
title_tags = extract_tags_from_text(discussion_title)
all_tags = list(set(comment_tags + title_tags))
print(f"πŸ” Comment tags found: {comment_tags}")
print(f"πŸ” Title tags found: {title_tags}")
print(f"🏷️ All unique tags: {all_tags}")
result_messages = []
if not all_tags:
msg = "No recognizable tags found in the discussion."
print(f"❌ {msg}")
result_messages.append(msg)
else:
print("πŸ€– Getting agent instance...")
agent = await get_agent()
if not agent:
msg = "Error: Agent not configured (missing HF_TOKEN please check)"
print(f"❌ {msg}")
result_messages.append(msg)
else:
print("βœ… Agent instance obtained successfully")
try:
user_prompt = f"""
I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}
For each tag, please:
1. Check if the tag already exists on the repository using get_current_tags
2. If the tag doesn't exist, add it using add_new_tag
3. Provide a summary of what was done for each tag
Please process all {len(all_tags)} tags: {", ".join(all_tags)}
"""
print("πŸ’¬ Sending comprehensive prompt to agent...")
print(f"πŸ“ Prompt: {user_prompt}")
conversation_result = []
try:
async for item in agent.run(user_prompt):
item_str = str(item)
conversation_result.append(item_str)
if (
"tool_call" in item_str.lower()
or "function" in item_str.lower()
):
print(f"πŸ”§ Agent using tools: {item_str[:200]}...")
elif "content" in item_str and len(item_str) < 500:
print(f"πŸ’­ Agent response: {item_str}")
full_response = " ".join(conversation_result)
print(f"πŸ“‹ Agent conversation completed successfully")
for tag in all_tags:
tag_mentioned = tag.lower() in full_response.lower()
if (
"already exists" in full_response.lower()
and tag_mentioned
):
msg = f"Tag '{tag}': Already exists"
elif (
"pr" in full_response.lower()
or "pull request" in full_response.lower()
):
if tag_mentioned:
msg = f"Tag '{tag}': PR created successfully"
else:
msg = (
f"Tag '{tag}': Processed "
"(PR may have been created)"
)
elif "success" in full_response.lower() and tag_mentioned:
msg = f"Tag '{tag}': Successfully processed"
elif "error" in full_response.lower() and tag_mentioned:
msg = f"Tag '{tag}': Error during processing"
else:
msg = f"Tag '{tag}': Processed by agent"
print(f"βœ… Result for tag '{tag}': {msg}")
result_messages.append(msg)
except Exception as agent_error:
print(f"⚠️ Agent streaming failed: {str(agent_error)}")
print("πŸ”„ Falling back to direct MCP tool calls...")
try:
import sys
import importlib.util
spec = importlib.util.spec_from_file_location(
"mcp_server", "./mcp_server.py"
)
mcp_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mcp_module)
for tag in all_tags:
try:
print(
f"πŸ”§ Directly calling get_current_tags for '{tag}'"
)
current_tags_result = mcp_module.get_current_tags(
repo_name
)
print(
f"πŸ“„ Current tags result: {current_tags_result}"
)
import json
tags_data = json.loads(current_tags_result)
if tags_data.get("status") == "success":
current_tags = tags_data.get("current_tags", [])
if tag in current_tags:
msg = f"Tag '{tag}': Already exists"
print(f"βœ… {msg}")
else:
print(
f"πŸ”§ Directly calling add_new_tag for '{tag}'"
)
add_result = mcp_module.add_new_tag(
repo_name, tag
)
print(f"πŸ“„ Add tag result: {add_result}")
add_data = json.loads(add_result)
if add_data.get("status") == "success":
pr_url = add_data.get("pr_url", "")
msg = f"Tag '{tag}': PR created - {pr_url}"
elif (
add_data.get("status")
== "already_exists"
):
msg = f"Tag '{tag}': Already exists"
else:
msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
print(f"βœ… {msg}")
else:
error_msg = tags_data.get(
"error", "Unknown error"
)
msg = f"Tag '{tag}': Error - {error_msg}"
print(f"❌ {msg}")
result_messages.append(msg)
except Exception as direct_error:
error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
print(f"❌ {error_msg}")
result_messages.append(error_msg)
except Exception as fallback_error:
error_msg = f"Fallback approach failed: {str(fallback_error)}"
print(f"❌ {error_msg}")
result_messages.append(error_msg)
except Exception as e:
error_msg = f"Error during agent processing {str(e)}"
print(f"❌ {error_msg}")
result_messages.append(error_msg)
base_url="https://huggingface.co"
discussion_url=f"{base_url}/{repo_name}/discussion/{discussion_num}"
interaction = {
"timestamp": datetime.now().isoformat(),
"repo": repo_name,
"discussion_title": discussion_title,
"discussion_num": discussion_num,
"discussion_url": discussion_url,
"original_comment": comment_content,
"comment_author": comment_author,
"detected_tags": all_tags,
"results": result_messages,
}
tag_operations_store.append(interaction)
final_result="|".join(result_messages)
print(f"πŸ’Ύ Stored interaction and returning result: {final_result}")
return final_result
except Exception as e:
error_msg = f"❌ Fatal error in process_webhook_comment: {str(e)}"
print(error_msg)
return error_msg
@app.get("/")
async def root():
"""Root endpoint with basic information"""
return {
"name":"HF Tagging Bot",
"status":"running",
"description":"Webhook listener for automatic model tagging",
"endpoints":{
"webhook":"/webhook",
"health":"/health",
"operations":"/operations"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
agent=await get_agent()
return {
"status":"healthy",
"timestamp":datetime.now().isoformat(),
"components":{
"webhook_secret":"configured" if WEBHOOK_SECRET else "missing",
"hf_token":"configured" if HF_TOKEN else "missing",
"mcp_agent":"ready" if agent else "not ready"
}
}
@app.get("/operations")
async def get_operations():
"""Get recent tag operations for monitoring"""
recent_ops=tag_operations_store[-50:] if tag_operations_store else []
return {
"total_operations":len(tag_operations_store),
"recent_operations":recent_ops
}
@app.post("/webhook")
async def webhook_handler(request:Request, background_tasks:BackgroundTasks):
"""
Handle incoming webhooks from Hugging Face Hub
Following the pattern from: https://raw.githubusercontent.com/huggingface/hub-docs/refs/heads/main/docs/hub/webhooks-guide-discussion-bot.md
"""
print("πŸ”” Webhook received!")
webhook_secret=request.headers.get("X-webhook-Secret")
if webhook_secret!=WEBHOOK_SECRET:
print("❌ Invalid webhook secret")
return {"error":"incorrect secret"}
payload=await request.json()
print(f"πŸ“₯ Received webhook payload: {json.dumps(payload, indent=2)}")
event=payload.get("event",{})
scope=event.get("score")
action=event.get("action")
print(f"πŸ” Event details - scope: {scope}, action: {action}")
scope_check = scope == "discussion"
action_check = action == "create"
not_pr = not payload["discussion"]["isPullRequest"]
scope_check = scope_check and not_pr
print(f"βœ… not_pr: {not_pr}")
print(f"βœ… scope_check: {scope_check}")
print(f"βœ… action_check: {action_check}")
if scope_check and action_check:
required_fields=['comment','discussion','repo']
missing_fields=[field for field in required_fields if field not in payload]
if missing_fields:
error_msg = f"Missing required fields: {missing_fields}"
print(f"❌ {error_msg}")
return {"error": error_msg}
print(f"πŸš€ Processing webhook for repo: {payload['repo']['name']}")
background_tasks.add_task(process_webhook_comment,payload)
return {"status":"processing"}
print(f"⏭️ Ignoring webhook - scope: {scope}, action: {action}")
return {"status": "ignored"}
@app.post("/simulate_webhook")
async def simulate_webhook(repo_name:str,discussion_title:str,comment_content:str)->str:
"""Simulate webhook for testing purposes"""
if not all([repo_name,discussion_title,comment_content]):
return "please fill in all fields"
mock_payload={
"event":{"action":"create","scope":"discussion.comment"},
"comment":{"content":comment_content,"author":{"id":"test-user"},"id":"mock-comment-id","hidden":False},
"discussion":{"title":discussion_title,"num":len(tag_operations_store)+1,"id":"mock-comment-id","status":"open","isPullRequest":False},
"repo":{"name":repo_name,"type":"model","private":False}
}
response=await process_webhook_comment(mock_payload)
return f"βœ… Processed! Results: {response}"
def create_gradio_app():
"""Create Gradio interface"""
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏷️ HF Tagging Bot Dashboard")
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
gr.Markdown("""
## How it works:
- Monitors HuggingFace Hub discussions
- Detects tag mentions in comments (e.g., "tag: pytorch",
"#transformers")
- Automatically adds recognized tags to the model repository
- Supports common ML tags like: pytorch, tensorflow,
text-generation, etc.
""")
with gr.Column():
sim_repo=gr.Textbox(label="Repository",value="burtenshaw/play-mcp-repo-bot",placeholder="username/model-name")
sim_title= gr.Textbox(label="Discussion Title",value="Add pytorch tag",placeholder="Discussion title")
sim_comment=gr.Textbox(label="comment",lines=3,value="This model should have tags: pytorch, text-generation",placeholder="Comment mentioning tags ...")
sim_btn=gr.Button("🏷️ Test Tag Detection")
with gr.Column():
sim_result=gr.Textbox(label="Result",lines=8)
sim_btn.click(fn=simulate_webhook,inputs=[sim_repo,sim_title,sim_comment],outputs=sim_result)
gr.Markdown(f"""## Recognized Tags: {",".join(sorted(RECOGNIZED_TAGS))}""")
return demo
gradio_app=create_gradio_app()
app=gr.mount_gradio_app(app,gradio_app,path="/gradio")
@app.get("/")
async def root_direct():
return RedirectResponse(url="/gradio")
if __name__=="__main__":
print("πŸš€ Starting HF Tagging Bot...")
print("πŸ“Š Dashboard: http://localhost:7860/gradio")
print("πŸ”— Webhook: http://localhost:7860/webhook")
uvicorn.run("app:app",host="0.0.0.0",port=7860,reload=True)