File size: 11,295 Bytes
3b7d44a
 
 
 
 
 
20b4d4f
3b7d44a
 
 
 
 
 
 
 
 
 
 
 
120c53a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7d44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b4d4f
 
 
 
 
 
3b7d44a
20b4d4f
3b7d44a
 
20b4d4f
 
 
3b7d44a
 
 
 
 
 
 
 
 
 
120c53a
3b7d44a
20b4d4f
 
 
 
3b7d44a
 
 
 
 
 
 
 
 
 
 
20b4d4f
 
 
9db6d22
3b7d44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b4d4f
3b7d44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b4d4f
3b7d44a
 
 
 
 
b020a59
3b7d44a
b020a59
3b7d44a
 
 
20b4d4f
3b7d44a
20b4d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db6d22
 
 
 
 
 
 
20b4d4f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import pandas as pd
from statistics import mean
from huggingface_hub import HfApi, create_repo
from datasets import load_dataset, Dataset
from datasets.data_files import EmptyDatasetError
import re

from constants import (
    REPO_ID,
    HF_TOKEN,
    DATASETS,
    SHORT_DATASET_NAMES,
    DATASET_DESCRIPTIONS,
)

api = HfApi(token=HF_TOKEN)


OPEN_LICENSE_KEYWORDS = {
    "mit", "apache", "apache-2", "apache-2.0",
    "bsd", "bsd-2", "bsd-3", "bsd-2-clause", "bsd-3-clause",
    "isc", "mpl", "mpl-2.0",
    "lgpl", "lgpl-2.1", "lgpl-3.0",
    "gpl", "gpl-2.0", "gpl-3.0", "agpl", "agpl-3.0",
    "epl", "epl-2.0", "cddl", "cddl-1.0", "cddl-1.1",
    "bsl", "bsl-1.0", "boost", "zlib", "unlicense", "artistic-2.0",
    "cc0", "cc0-1.0",
    "cc-by", "cc-by-3.0", "cc-by-4.0",
    "cc-by-sa", "cc-by-sa-3.0", "cc-by-sa-4.0",
    "openrail", "openrail-m", "bigscience openrail", "bigscience openrail-m",
    "open-source", "opensource", "open source"
}

RESTRICTIVE_LICENSE_KEYWORDS = {
    "cc-by-nc", "cc-by-nc-sa", "cc-nc", "nc-sa", "nc-nd",
    "cc-by-nd", "cc-nd", "no-derivatives", "no derivatives",
    "non-commercial", "noncommercial", "research-only", "research only",
    "llama", "llama-2", "community license",
    "proprietary", "closed", "unknown", "custom"
}

def is_open_license(license_str: str) -> bool:
    s = (str(license_str) if license_str is not None else "").strip().lower()
    if not s:
        return False
    if any(pat in s for pat in RESTRICTIVE_LICENSE_KEYWORDS):
        return False
    return any(pat in s for pat in OPEN_LICENSE_KEYWORDS)


def init_repo():
    try:
        api.repo_info(REPO_ID, repo_type="dataset")
    except:
        create_repo(REPO_ID, repo_type="dataset", private=True, token=HF_TOKEN)


def load_data():
    columns = (
        ["model_name", "link", "license", "overall_wer", "overall_cer"]
        + [f"wer_{ds}" for ds in DATASETS]
        + [f"cer_{ds}" for ds in DATASETS]
    )
    try:
        dataset = load_dataset(REPO_ID, token=HF_TOKEN)
        df = dataset["train"].to_pandas()
    except EmptyDatasetError:
        df = pd.DataFrame(columns=columns)

    if not df.empty:
        df = df.sort_values("overall_wer").reset_index(drop=True)
        df.insert(0, "rank", df.index + 1)
        for col in (
            ["overall_wer", "overall_cer"]
            + [f"wer_{ds}" for ds in DATASETS]
            + [f"cer_{ds}" for ds in DATASETS]
        ):
            df[col] = (df[col] * 100).round(2)

        best_values = {ds: df[f"wer_{ds}"].min() for ds in DATASETS}
        for short_ds, ds in zip(SHORT_DATASET_NAMES, DATASETS):
            df[short_ds] = df.apply(
                lambda row: f'<span title="CER: {row[f"cer_{ds}"]:.2f}%" '
                f'class="metric-cell{" best-metric" if row[f"wer_{ds}"] == best_values[ds] else ""}">'
                f"{row[f'wer_{ds}']:.2f}%</span>",
                axis=1,
            )
            df = df.drop(columns=[f"wer_{ds}", f"cer_{ds}"])

        df["model_name"] = df.apply(
            lambda row: f'<a href="{row["link"]}" target="_blank">{row["model_name"]}</a>',
            axis=1,
        )
        df = df.drop(columns=["link"])

        df["license"] = df["license"].apply(lambda x: "Открытая" if is_open_license(x) else "Закрытая")

        df["rank"] = df["rank"].apply(
            lambda r: "🥇" if r == 1 else "🥈" if r == 2 else "🥉" if r == 3 else str(r)
        )

        df.rename(
            columns={
                "overall_wer": "Средний WER ⬇️",
                "overall_cer": "Средний CER ⬇️",
                "license": "Тип модели",
                "model_name": "Модель",
                "rank": "Ранг",
            },
            inplace=True,
        )

        table_html = df.to_html(
            escape=False, index=False, classes="display cell-border compact stripe"
        )
        return f'<div class="leaderboard-wrapper"><div class="leaderboard-table">{table_html}</div></div>'
    else:
        return (
            '<div class="leaderboard-wrapper"><div class="leaderboard-table"><table><thead><tr><th>Ранг</th><th>Модель</th><th>Тип модели</th><th>Средний WER ⬇️</th><th>Средний CER ⬇️</th>'
            + "".join(f"<th>{short}</th>" for short in SHORT_DATASET_NAMES)
            + "</tr></thead><tbody></tbody></table></div></div>"
        )


def process_submit(json_str):
    columns = (
        ["model_name", "link", "license", "overall_wer", "overall_cer"]
        + [f"wer_{ds}" for ds in DATASETS]
        + [f"cer_{ds}" for ds in DATASETS]
    )
    try:
        data = json.loads(json_str)
        required_keys = ["model_name", "link", "license", "metrics"]
        if not all(key in data for key in required_keys):
            raise ValueError(
                "Неверная структура JSON. Требуемые поля: model_name, link, license, metrics"
            )
        metrics = data["metrics"]
        if set(metrics.keys()) != set(DATASETS):
            raise ValueError(
                f"Метрики должны быть для всех датасетов: {', '.join(DATASETS)}"
            )
        wers, cers = [], []
        row = {
            "model_name": data["model_name"],
            "link": data["link"],
            "license": data["license"],
        }
        for ds in DATASETS:
            if "wer" not in metrics[ds] or "cer" not in metrics[ds]:
                raise ValueError(f"Для {ds} требуются wer и cer")
            row[f"wer_{ds}"] = metrics[ds]["wer"]
            row[f"cer_{ds}"] = metrics[ds]["cer"]
            wers.append(metrics[ds]["wer"])
            cers.append(metrics[ds]["cer"])
        row["overall_wer"] = mean(wers)
        row["overall_cer"] = mean(cers)

        try:
            dataset = load_dataset(REPO_ID, token=HF_TOKEN)
            df = dataset["train"].to_pandas()
        except EmptyDatasetError:
            df = pd.DataFrame(columns=columns)

        new_df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
        new_dataset = Dataset.from_pandas(new_df)
        new_dataset.push_to_hub(REPO_ID, token=HF_TOKEN)

        updated_html = load_data()
        return updated_html, "Успешно добавлено!", ""
    except Exception as e:
        return None, f"Ошибка: {str(e)}", json_str


def get_datasets_description():
    html = '<div class="datasets-container">'
    for short_ds, info in DATASET_DESCRIPTIONS.items():
        html += f"""
        <div class="dataset-card">
            <h3>{short_ds} <span class="full-name">{info["full_name"]}</span></h3>
            <p>{info["description"]}</p>
            <p class="records">📊 {info["num_rows"]} записей</p>
        </div>
        """
    html += "</div>"
    return html


def _strip_punct(text: str) -> str:
    return re.sub(r"[^\w\s]+", "", text, flags=re.UNICODE)


def normalize_text(s: str) -> str:
    return _strip_punct(s.lower()).strip()


def _edit_distance(a, b):
    n, m = len(a), len(b)
    dp = [[0] * (m + 1) for _ in range(n + 1)]
    for i in range(n + 1):
        dp[i][0] = i
    for j in range(m + 1):
        dp[0][j] = j
    for i in range(1, n + 1):
        ai = a[i - 1]
        for j in range(1, m + 1):
            cost = 0 if ai == b[j - 1] else 1
            dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + cost)
    return dp[n][m]


def compute_wer_cer(ref: str, hyp: str, normalize: bool = True):
    if normalize:
        ref_norm, hyp_norm = normalize_text(ref), normalize_text(hyp)
    else:
        ref_norm, hyp_norm = ref, hyp
    ref_words, hyp_words = ref_norm.split(), hyp_norm.split()
    Nw = max(1, len(ref_words))
    wer = _edit_distance(ref_words, hyp_words) / Nw
    ref_chars, hyp_chars = list(ref_norm), list(hyp_norm)
    Nc = max(1, len(ref_chars))
    cer = _edit_distance(ref_chars, hyp_chars) / Nc
    return round(wer * 100, 2), round(cer * 100, 2)


def get_metrics_html():
    return """
<div class="metrics-grid">
  <div class="metric-card">
    <h3>WER — Word Error Rate</h3>
    <div class="formula">WER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
    <div class="chips">
      <div class="chip"><b>S</b><small>замены</small></div>
      <div class="chip"><b>D</b><small>удаления</small></div>
      <div class="chip"><b>I</b><small>вставки</small></div>
      <div class="chip"><b>N</b><small>слов в референсе</small></div>
    </div>
  </div>
  <div class="metric-card">
    <h3>CER — Character Error Rate</h3>
    <div class="formula">CER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
    <div class="chips">
      <div class="chip"><b>S, D, I</b><small>операции редактирования</small></div>
      <div class="chip"><b>N</b><small>символов в референсе</small></div>
    </div>
  </div>
  <div class="metric-card">
    <h3>Нормализация</h3>
    <p class="metric-text">Перед расчётом приводим текст к нижнему регистру и удаляем пунктуацию.</p>
  </div>
  <div class="metric-card">
    <h3>Сравнение</h3>
    <p class="metric-text">Сортировка по среднему WER по всем датасетам. Метрики отображаются в процентах.</p>
  </div>
</div>
"""


def get_submit_html():
    return """
<div class="submit-grid">
  <div class="form-card">
    <h3>Общая информация</h3>
    <ul>
      <li><b>Название модели</b> — коротко и понятно.</li>
      <li><b>Ссылка</b> — HuggingFace, GitHub или сайт.</li>
      <li><b>Лицензия</b> — MIT, Apache-2.0, GPL или Closed.</li>
    </ul>
  </div>
  <div class="form-card">
    <h3>Метрики</h3>
    <p>Укажите WER и CER для всех датасетов в формате JSON. Значения — от 0 до 1.</p>
    <pre class="code-block json">{
  <span class="key">"Russian_LibriSpeech"</span>: { <span class="key">"wer"</span>: <span class="number">0.1234</span>, <span class="key">"cer"</span>: <span class="number">0.0567</span> },
  <span class="key">"Common_Voice_Corpus_22.0"</span>: { <span class="key">"wer"</span>: <span class="number">0.2345</span>, <span class="key">"cer"</span>: <span class="number">0.0789</span> },
  <span class="key">"Tone_Webinars"</span>: { <span class="key">"wer"</span>: <span class="number">0.3456</span>, <span class="key">"cer"</span>: <span class="number">0.0987</span> },
  <span class="key">"Tone_Books"</span>: { <span class="key">"wer"</span>: <span class="number">0.4567</span>, <span class="key">"cer"</span>: <span class="number">0.1098</span> },
  <span class="key">"Tone_Speak"</span>: { <span class="key">"wer"</span>: <span class="number">0.5678</span>, <span class="key">"cer"</span>: <span class="number">0.1209</span> },
  <span class="key">"Sova_RuDevices"</span>: { <span class="key">"wer"</span>: <span class="number">0.6789</span>, <span class="key">"cer"</span>: <span class="number">0.1310</span> }
}</pre>
  </div>
</div>
"""