File size: 16,809 Bytes
53b20f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec57300
53b20f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
from diffusers.utils import is_xformers_available
import os
import base64
import json
from huggingface_hub import InferenceClient
import logging

#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#############################

def get_caption_language(prompt):
    """Detects if the prompt contains Chinese characters."""
    ranges = [
        ('\u4e00', '\u9fff'),  # CJK Unified Ideographs
    ]
    for char in prompt:
        if any(start <= char <= end for start, end in ranges):
            return 'zh'
    return 'en'

def polish_prompt(original_prompt, system_prompt, hf_token):
    """
    Rewrites the prompt using a Hugging Face InferenceClient.
    Requires user-provided HF token for API access.
    """
    if not hf_token or not hf_token.strip():
        gr.Warning("HF Token is required for prompt rewriting but was not provided!")
        return original_prompt
    client = InferenceClient(
        provider="cerebras",
        api_key=hf_token,
    )
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": original_prompt}
    ]
    try:
        completion = client.chat.completions.create(
            model="Qwen/Qwen3-235B-A22B-Instruct-2507",
            messages=messages,
            max_tokens=512,
        )
        polished_prompt = completion.choices[0].message.content
        polished_prompt = polished_prompt.strip().replace("\n", " ")
        return polished_prompt
    except Exception as e:
        print(f"Error during Hugging Face API call: {e}")
        gr.Warning("Failed to rewrite prompt. Using original.")
        return original_prompt

SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and languageโ€”**do not translate** or alter style.
### Human Editing (e.g., change a person's face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:  
  `"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`  
  if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
  "Rewritten": "..."
}
'''

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)

# Load LoRA weights for acceleration
pipe.load_lora_weights(
    "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()

if is_xformers_available():
    pipe.enable_xformers_memory_efficient_attention()
else:
    print("xformers not available or failed to load.")

@spaces.GPU(duration=60)
def infer(
    image,
    prompt,
    seed=42,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=8,
    rewrite_prompt=False,
    hf_token="",
    num_images_per_prompt=1,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Requires user-provided HF token for prompt rewriting.
    """
    original_prompt = prompt  # Save original prompt for display
    negative_prompt = " "
    prompt_info = ""  # Initialize info text
    
    # Handle prompt rewriting with status messages
    if rewrite_prompt:
        if not hf_token.strip():
            gr.Warning("HF Token is required for prompt rewriting but was not provided!")
            prompt_info = f"""<div class="prompt-info-box warning">
<h3>โš ๏ธ Prompt Rewriting Skipped</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p class="note">HF Token required for enhancement</p>
</div>"""
            rewritten_prompt = original_prompt
        else:
            try:
                rewritten_prompt = polish_prompt(original_prompt, SYSTEM_PROMPT_EDIT, hf_token)
                prompt_info = f"""<div class="prompt-info-box success">
<h3>โœจ Enhanced Successfully</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p><strong>Enhanced:</strong> {rewritten_prompt}</p>
</div>"""
            except Exception as e:
                gr.Warning(f"Prompt rewriting failed: {str(e)}")
                rewritten_prompt = original_prompt
                prompt_info = f"""<div class="prompt-info-box error">
<h3>โŒ Enhancement Failed</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p class="note">Error: {str(e)}</p>
</div>"""
    else:
        rewritten_prompt = original_prompt
        prompt_info = f"""<div class="prompt-info-box default">
<h3>๐Ÿ“ Original Prompt</h3>
<p>{original_prompt}</p>
</div>"""
    
    # Generate images
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    edited_images = pipe(
        image,
        prompt=rewritten_prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
    ).images
    
    return edited_images, seed, prompt_info

MAX_SEED = np.iinfo(np.int32).max

examples = [
    "Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
    "Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
    "Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
    "Remove the blue sky and replace it with a dark night cityscape.",
    """Replace "Qwen" with "้€šไน‰" in the Image. Ensure Chinese font is used for "้€šไน‰" and position it to the top left with a light heading-style font."""
]

# Custom CSS for enhanced visual design
custom_css = """
/* Gradient background */
.gradio-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #fecfef 75%, #fecfef 100%);
    min-height: 100vh;
}

/* Main container styling */
.container {
    max-width: 1400px !important;
    margin: 0 auto !important;
    padding: 2rem !important;
}

/* Card-like sections */
.gr-box {
    background: rgba(255, 255, 255, 0.95) !important;
    backdrop-filter: blur(10px) !important;
    border-radius: 20px !important;
    box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1) !important;
    border: 1px solid rgba(255, 255, 255, 0.5) !important;
    padding: 1.5rem !important;
    margin-bottom: 1.5rem !important;
}

/* Header styling */
h1 {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    font-size: 3rem !important;
    font-weight: 800 !important;
    text-align: center;
    margin-bottom: 0.5rem !important;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}

h2 {
    color: #4a5568 !important;
    font-size: 1.5rem !important;
    font-weight: 600 !important;
    margin-bottom: 1rem !important;
}

/* Button styling */
.gr-button-primary {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border: none !important;
    color: white !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    padding: 0.8rem 2rem !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
    transition: all 0.3s ease !important;
}

.gr-button-primary:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.5) !important;
}

/* Input fields styling */
.gr-input, .gr-text-input, .gr-slider, .gr-dropdown {
    border-radius: 10px !important;
    border: 2px solid #e2e8f0 !important;
    background: white !important;
    transition: all 0.3s ease !important;
}

.gr-input:focus, .gr-text-input:focus {
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}

/* Accordion styling */
.gr-accordion {
    background: rgba(255, 255, 255, 0.8) !important;
    border-radius: 12px !important;
    border: 1px solid rgba(102, 126, 234, 0.2) !important;
    overflow: hidden !important;
}

/* Gallery styling */
.gr-gallery {
    border-radius: 12px !important;
    overflow: hidden !important;
}

/* Prompt info boxes */
.prompt-info-box {
    padding: 1.5rem;
    border-radius: 12px;
    margin: 1rem 0;
    animation: fadeIn 0.5s ease;
}

.prompt-info-box h3 {
    margin: 0 0 0.75rem 0;
    font-size: 1.2rem;
    font-weight: 600;
}

.prompt-info-box p {
    margin: 0.5rem 0;
    line-height: 1.6;
}

.prompt-info-box.success {
    background: linear-gradient(135deg, #d4f4dd 0%, #e3f9e5 100%);
    border-left: 4px solid #48bb78;
}

.prompt-info-box.warning {
    background: linear-gradient(135deg, #fef5e7 0%, #fff9ec 100%);
    border-left: 4px solid #f6ad55;
}

.prompt-info-box.error {
    background: linear-gradient(135deg, #fed7d7 0%, #fee5e5 100%);
    border-left: 4px solid #fc8181;
}

.prompt-info-box.default {
    background: linear-gradient(135deg, #e6f3ff 0%, #f0f7ff 100%);
    border-left: 4px solid #667eea;
}

.prompt-info-box .note {
    font-size: 0.9rem;
    color: #718096;
    font-style: italic;
}

/* Checkbox styling */
.gr-checkbox {
    background: white !important;
    border-radius: 8px !important;
    padding: 0.5rem !important;
}

/* Token input field */
input[type="password"] {
    font-family: monospace !important;
    letter-spacing: 0.05em !important;
}

/* Info badges */
.gr-markdown p {
    color: #4a5568;
    line-height: 1.6;
}

.gr-markdown a {
    color: #667eea !important;
    text-decoration: none !important;
    font-weight: 500 !important;
    transition: color 0.3s ease !important;
}

.gr-markdown a:hover {
    color: #764ba2 !important;
    text-decoration: underline !important;
}

/* Animation */
@keyframes fadeIn {
    from {
        opacity: 0;
        transform: translateY(10px);
    }
    to {
        opacity: 1;
        transform: translateY(0);
    }
}

/* Slider styling */
.gr-slider input[type="range"] {
    background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
}

/* Group styling */
.gr-group {
    background: rgba(249, 250, 251, 0.8) !important;
    border-radius: 12px !important;
    padding: 1rem !important;
    margin-top: 1rem !important;
}

/* Loading spinner customization */
.gr-loading {
    color: #667eea !important;
}

/* Example buttons */
.gr-examples button {
    background: white !important;
    border: 2px solid #e2e8f0 !important;
    border-radius: 8px !important;
    padding: 0.5rem 1rem !important;
    transition: all 0.3s ease !important;
}

.gr-examples button:hover {
    border-color: #667eea !important;
    background: rgba(102, 126, 234, 0.05) !important;
}
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ๐ŸŽจ Nano-Banana")
    gr.Markdown("โœจ **Ultra-fast 8-step image editing with AI-powered prompt enhancement**")
    gr.Markdown("๐Ÿ” **Secure prompt rewriting with your [Hugging Face token](https://huggingface.co/settings/tokens)**")
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                input_image = gr.Image(
                    label="๐Ÿ“ธ Input Image", 
                    type="pil",
                    elem_classes="gr-box"
                )
                prompt = gr.Text(
                    label="โœ๏ธ Edit Instruction", 
                    placeholder="e.g. Add a dog to the right side, change the sky to sunset...",
                    lines=3,
                    elem_classes="gr-box"
                )
                
                with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0
                    )
                    randomize_seed = gr.Checkbox(label="๐ŸŽฒ Randomize Seed", value=True)
                    
                    with gr.Row():
                        true_guidance_scale = gr.Slider(
                            label="Guidance Scale",
                            minimum=1.0,
                            maximum=5.0,
                            step=0.1,
                            value=4.0
                        )
                        num_inference_steps = gr.Slider(
                            label="Inference Steps",
                            minimum=4,
                            maximum=16,
                            step=1,
                            value=8
                        )
                    
                    num_images_per_prompt = gr.Slider(
                        label="Images per Prompt",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=1
                    )
                
                run_button = gr.Button("๐Ÿš€ Generate Edit", variant="primary", size="lg")
        
        with gr.Column(scale=1):
            result = gr.Gallery(
                label="๐Ÿ–ผ๏ธ Output Images", 
                show_label=True, 
                columns=2,
                rows=2,
                elem_classes="gr-box"
            )
            
            # Prompt display component
            prompt_info = gr.HTML(visible=False)
            
            with gr.Group():
                rewrite_toggle = gr.Checkbox(
                    label="๐Ÿค– Enable AI Prompt Enhancement", 
                    value=False, 
                    interactive=True
                )
                hf_token_input = gr.Textbox(
                    label="๐Ÿ”‘ Hugging Face API Token",
                    type="password",
                    placeholder="hf_xxxxxxxxxxxxxxxx",
                    visible=False,
                    info="Your token is secure and only used for API calls. Get yours from HuggingFace settings.",
                    elem_classes="gr-box"
                )
                
                def toggle_token_visibility(checked):
                    return gr.update(visible=checked)
                
                rewrite_toggle.change(
                    toggle_token_visibility,
                    inputs=[rewrite_toggle],
                    outputs=[hf_token_input]
                )
    
    # Examples section
    gr.Examples(
        examples=examples,
        inputs=prompt,
        label="๐Ÿ’ก Example Prompts"
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            input_image,
            prompt,
            seed,
            randomize_seed,
            true_guidance_scale,
            num_inference_steps,
            rewrite_toggle,
            hf_token_input,
            num_images_per_prompt
        ],
        outputs=[result, seed, prompt_info]
    )
    
    # Show prompt info box after processing
    def set_prompt_visible():
        return gr.update(visible=True)
    
    run_button.click(
        fn=set_prompt_visible,
        inputs=None,
        outputs=[prompt_info],
        queue=False
    )
    prompt.submit(
        fn=set_prompt_visible,
        inputs=None,
        outputs=[prompt_info],
        queue=False
    )

if __name__ == "__main__":
    demo.launch()