#!/usr/bin/env python # coding: utf-8 # In[1]: import gradio as gr import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences import os import pickle from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from keras.utils import to_categorical, pad_sequences import numpy as np # In[2]: model = tf.keras.models.load_model('deep_learning_model_sentiment_analysis.h5', compile=False) model.compile() # In[3]: with open('tokenizer_new.pickle', 'rb') as file: tokenizer = pickle.load(file) # In[11]: def decide(text): sentiment_classes = ['negative', 'neutral', 'positive'] max_len = 2000 # Tokenize the text text = [text] xt = tokenizer.texts_to_sequences(text) xt = pad_sequences(xt, padding='post', maxlen=max_len) # Make the prediction prediction = model.predict(xt) prediction_class = sentiment_classes[np.argmax(prediction)] return prediction_class # In[12]: example_sentence_1 = "aduh mahasiswa sombong kasih kartu kuning belajar usahlah politik selesai kuliah nya politik telat dasar mahasiswa" example_sentence_2 = "lokasi strategis jalan sumatra bandung nya nyaman sofa lantai paella nya enak pas dimakan minum bir dingin appetiser nya enak enak" examples = [[example_sentence_1], [example_sentence_2]] # In[13]: title = "Sentiment Analysis dengan Deep Learning" article = "

Created by @Vrooh933 Production | GitHub Profile" # In[14]: intfc = gr.Interface(fn=decide, inputs=gr.Textbox(label="Input here", lines=2, placeholder="Input your text"), outputs=gr.Label(label="Sentiment Analysis"), examples=examples, title=title, article=article,) intfc.launch(inline=False) # In[ ]: