Spaces:
Running
on
Zero
Running
on
Zero
add inf codes
Browse files- app.py +288 -4
- requirements.txt +6 -0
app.py
CHANGED
|
@@ -1,7 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import spaces
|
| 3 |
+
from snac import SNAC
|
| 4 |
+
import torch
|
| 5 |
import gradio as gr
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
+
from huggingface_hub import snapshot_download
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
# Check if CUDA is available
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
|
| 14 |
+
print("Loading SNAC model...")
|
| 15 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 16 |
+
snac_model = snac_model.to(device)
|
| 17 |
+
|
| 18 |
+
# Available models - LFM2 models
|
| 19 |
+
MODELS = {
|
| 20 |
+
"Jenny Voice": "Vyvo/VyvoTTS-LFM2-350M-Jenny",
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
# Pre-load all models
|
| 24 |
+
print("Loading models...")
|
| 25 |
+
models = {}
|
| 26 |
+
tokenizers = {}
|
| 27 |
+
|
| 28 |
+
for lang, model_name in MODELS.items():
|
| 29 |
+
print(f"Loading {lang} model: {model_name}")
|
| 30 |
+
models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 31 |
+
models[lang].to(device)
|
| 32 |
+
tokenizers[lang] = AutoTokenizer.from_pretrained(model_name)
|
| 33 |
+
|
| 34 |
+
print("All models loaded successfully!")
|
| 35 |
+
|
| 36 |
+
# LFM2 Special Tokens Configuration
|
| 37 |
+
TOKENIZER_LENGTH = 64400
|
| 38 |
+
START_OF_TEXT = 1
|
| 39 |
+
END_OF_TEXT = 7
|
| 40 |
+
START_OF_SPEECH = TOKENIZER_LENGTH + 1
|
| 41 |
+
END_OF_SPEECH = TOKENIZER_LENGTH + 2
|
| 42 |
+
START_OF_HUMAN = TOKENIZER_LENGTH + 3
|
| 43 |
+
END_OF_HUMAN = TOKENIZER_LENGTH + 4
|
| 44 |
+
START_OF_AI = TOKENIZER_LENGTH + 5
|
| 45 |
+
END_OF_AI = TOKENIZER_LENGTH + 6
|
| 46 |
+
PAD_TOKEN = TOKENIZER_LENGTH + 7
|
| 47 |
+
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
|
| 48 |
+
|
| 49 |
+
# Process text prompt for LFM2
|
| 50 |
+
def process_prompt(prompt, tokenizer, device):
|
| 51 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 52 |
+
|
| 53 |
+
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
|
| 54 |
+
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
|
| 55 |
+
|
| 56 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
| 57 |
+
|
| 58 |
+
# No padding needed for single input
|
| 59 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
| 60 |
+
|
| 61 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
| 62 |
+
|
| 63 |
+
# Parse output tokens to audio for LFM2
|
| 64 |
+
def parse_output(generated_ids):
|
| 65 |
+
token_to_find = START_OF_SPEECH
|
| 66 |
+
token_to_remove = END_OF_SPEECH
|
| 67 |
+
|
| 68 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 69 |
+
|
| 70 |
+
if len(token_indices[1]) > 0:
|
| 71 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
| 72 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
| 73 |
+
else:
|
| 74 |
+
cropped_tensor = generated_ids
|
| 75 |
+
|
| 76 |
+
processed_rows = []
|
| 77 |
+
for row in cropped_tensor:
|
| 78 |
+
masked_row = row[row != token_to_remove]
|
| 79 |
+
processed_rows.append(masked_row)
|
| 80 |
+
|
| 81 |
+
code_lists = []
|
| 82 |
+
for row in processed_rows:
|
| 83 |
+
row_length = row.size(0)
|
| 84 |
+
new_length = (row_length // 7) * 7
|
| 85 |
+
trimmed_row = row[:new_length]
|
| 86 |
+
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
|
| 87 |
+
code_lists.append(trimmed_row)
|
| 88 |
+
|
| 89 |
+
return code_lists[0] # Return just the first one for single sample
|
| 90 |
+
|
| 91 |
+
# Redistribute codes for audio generation
|
| 92 |
+
def redistribute_codes(code_list, snac_model):
|
| 93 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
| 94 |
+
|
| 95 |
+
layer_1 = []
|
| 96 |
+
layer_2 = []
|
| 97 |
+
layer_3 = []
|
| 98 |
+
for i in range((len(code_list)+1)//7):
|
| 99 |
+
layer_1.append(code_list[7*i])
|
| 100 |
+
layer_2.append(code_list[7*i+1]-4096)
|
| 101 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
| 102 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
| 103 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 104 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 105 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 106 |
+
|
| 107 |
+
# Move tensors to the same device as the SNAC model
|
| 108 |
+
codes = [
|
| 109 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
| 110 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
| 111 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
audio_hat = snac_model.decode(codes)
|
| 115 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
| 116 |
+
|
| 117 |
+
# Main generation function
|
| 118 |
+
@spaces.GPU()
|
| 119 |
+
def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
| 120 |
+
if not text.strip():
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
try:
|
| 124 |
+
progress(0.1, "π Processing text...")
|
| 125 |
+
model = models[model_choice]
|
| 126 |
+
tokenizer = tokenizers[model_choice]
|
| 127 |
+
|
| 128 |
+
# Voice parameter is always None for LFM2 models
|
| 129 |
+
input_ids, attention_mask = process_prompt(text, tokenizer, device)
|
| 130 |
+
|
| 131 |
+
progress(0.3, "π΅ Generating speech tokens...")
|
| 132 |
+
with torch.no_grad():
|
| 133 |
+
generated_ids = model.generate(
|
| 134 |
+
input_ids=input_ids,
|
| 135 |
+
attention_mask=attention_mask,
|
| 136 |
+
max_new_tokens=max_new_tokens,
|
| 137 |
+
do_sample=True,
|
| 138 |
+
temperature=temperature,
|
| 139 |
+
top_p=top_p,
|
| 140 |
+
repetition_penalty=repetition_penalty,
|
| 141 |
+
num_return_sequences=1,
|
| 142 |
+
eos_token_id=END_OF_SPEECH,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
progress(0.6, "π§ Processing speech tokens...")
|
| 146 |
+
code_list = parse_output(generated_ids)
|
| 147 |
+
|
| 148 |
+
progress(0.8, "π§ Converting to audio...")
|
| 149 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
| 150 |
+
|
| 151 |
+
progress(1.0, "β
Completed!")
|
| 152 |
+
return (24000, audio_samples)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print(f"Error generating speech: {e}")
|
| 155 |
+
return None
|
| 156 |
+
|
| 157 |
+
# Example texts
|
| 158 |
+
EXAMPLE_TEXTS = [
|
| 159 |
+
"Hello! I am a speech system. I can read your text with a natural voice.",
|
| 160 |
+
"Today is a beautiful day. The weather is perfect for a walk.",
|
| 161 |
+
"The sun rises from the east and sets in the west. This is a rule of nature.",
|
| 162 |
+
"Technology makes our lives easier every day."
|
| 163 |
+
]
|
| 164 |
|
| 165 |
+
# Create modern Gradio interface using built-in theme
|
| 166 |
+
with gr.Blocks(title="π΅ Modern Text-to-Speech", theme=gr.themes.Soft(), css="""
|
| 167 |
+
.gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; }
|
| 168 |
+
.gradio-audio { background-color: #6b7280 !important; }
|
| 169 |
+
""") as demo:
|
| 170 |
+
# Header section
|
| 171 |
+
gr.Markdown("""
|
| 172 |
+
# π΅ VyvoTTS
|
| 173 |
+
### π [Github](https://github.com/Vyvo-Labs/VyvoTTS) | π€ [HF Model](https://huggingface.co/Vyvo/VyvoTTS-LFM2-350M-Jenny)
|
| 174 |
+
""")
|
| 175 |
+
|
| 176 |
+
gr.Markdown("""
|
| 177 |
+
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, fine-tuned on reach-vb/jenny_tts_dataset.
|
| 178 |
+
Better datasets can achieve higher quality results.
|
| 179 |
+
|
| 180 |
+
**Roadmap:**
|
| 181 |
+
- [ ] Transformers.js support
|
| 182 |
+
- [ ] Pretrained model release
|
| 183 |
+
- [ ] vLLM support
|
| 184 |
+
- [x] Training and inference code release
|
| 185 |
+
""")
|
| 186 |
+
|
| 187 |
+
with gr.Row():
|
| 188 |
+
with gr.Column(scale=2):
|
| 189 |
+
# Text input section
|
| 190 |
+
text_input = gr.Textbox(
|
| 191 |
+
label="π Text Input",
|
| 192 |
+
placeholder="Enter the text you want to convert to speech...",
|
| 193 |
+
lines=6,
|
| 194 |
+
max_lines=10
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Voice model selection (hidden since only Jenny is available)
|
| 198 |
+
model_choice = gr.Radio(
|
| 199 |
+
choices=list(MODELS.keys()),
|
| 200 |
+
value="Jenny Voice",
|
| 201 |
+
label="π€ Voice Model",
|
| 202 |
+
visible=False # Hide since only one option
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Advanced settings
|
| 206 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 207 |
+
temperature = gr.Slider(
|
| 208 |
+
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
| 209 |
+
label="π‘οΈ Temperature",
|
| 210 |
+
info="Higher values create more expressive but less stable speech"
|
| 211 |
+
)
|
| 212 |
+
top_p = gr.Slider(
|
| 213 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
| 214 |
+
label="π― Top P",
|
| 215 |
+
info="Nucleus sampling threshold value"
|
| 216 |
+
)
|
| 217 |
+
repetition_penalty = gr.Slider(
|
| 218 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
| 219 |
+
label="π Repetition Penalty",
|
| 220 |
+
info="Higher values discourage repetitive patterns"
|
| 221 |
+
)
|
| 222 |
+
max_new_tokens = gr.Slider(
|
| 223 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
| 224 |
+
label="π Maximum Length",
|
| 225 |
+
info="Maximum length of generated audio (in tokens)"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Action buttons
|
| 229 |
+
with gr.Row():
|
| 230 |
+
submit_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
|
| 231 |
+
clear_btn = gr.Button("ποΈ Clear", size="lg")
|
| 232 |
+
|
| 233 |
+
with gr.Column(scale=1):
|
| 234 |
+
# Output section
|
| 235 |
+
audio_output = gr.Audio(
|
| 236 |
+
label="π§ Generated Audio",
|
| 237 |
+
type="numpy",
|
| 238 |
+
interactive=False
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Example texts at the bottom
|
| 242 |
+
with gr.Row():
|
| 243 |
+
example_1_btn = gr.Button(
|
| 244 |
+
EXAMPLE_TEXTS[0],
|
| 245 |
+
size="sm",
|
| 246 |
+
elem_classes="example-button"
|
| 247 |
+
)
|
| 248 |
+
example_2_btn = gr.Button(
|
| 249 |
+
EXAMPLE_TEXTS[1],
|
| 250 |
+
size="sm",
|
| 251 |
+
elem_classes="example-button"
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
with gr.Row():
|
| 255 |
+
example_3_btn = gr.Button(
|
| 256 |
+
EXAMPLE_TEXTS[2],
|
| 257 |
+
size="sm",
|
| 258 |
+
elem_classes="example-button"
|
| 259 |
+
)
|
| 260 |
+
example_4_btn = gr.Button(
|
| 261 |
+
EXAMPLE_TEXTS[3],
|
| 262 |
+
size="sm",
|
| 263 |
+
elem_classes="example-button"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# Set up example button events
|
| 267 |
+
example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input)
|
| 268 |
+
example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input)
|
| 269 |
+
example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input)
|
| 270 |
+
example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input)
|
| 271 |
+
|
| 272 |
+
# Set up event handlers
|
| 273 |
+
submit_btn.click(
|
| 274 |
+
fn=generate_speech,
|
| 275 |
+
inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 276 |
+
outputs=audio_output,
|
| 277 |
+
show_progress=True
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
def clear_interface():
|
| 281 |
+
return "", None
|
| 282 |
+
|
| 283 |
+
clear_btn.click(
|
| 284 |
+
fn=clear_interface,
|
| 285 |
+
inputs=[],
|
| 286 |
+
outputs=[text_input, audio_output]
|
| 287 |
+
)
|
| 288 |
|
| 289 |
+
# Launch the app
|
| 290 |
+
if __name__ == "__main__":
|
| 291 |
+
demo.queue().launch(share=False, ssr_mode=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
snac
|
| 2 |
+
python-dotenv
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
spaces
|
| 6 |
+
accelerate
|