File size: 8,810 Bytes
406f22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import Optional, Tuple, Union

import librosa
import numpy as np
import torch
from packaging.version import parse as V
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types

from ..utils.complex_utils import is_complex
from ..utils.inversible_interface import InversibleInterface
from ..utils.nets_utils import make_pad_mask

is_torch_1_10_plus = V(torch.__version__) >= V("1.10.0")


is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")


is_torch_1_7_plus = V(torch.__version__) >= V("1.7")


class Stft(torch.nn.Module, InversibleInterface):
    def __init__(
        self,
        n_fft: int = 512,
        win_length: int = None,
        hop_length: int = 128,
        window: Optional[str] = "hann",
        center: bool = True,
        normalized: bool = False,
        onesided: bool = True,
    ):
        assert check_argument_types()
        super().__init__()
        self.n_fft = n_fft
        if win_length is None:
            self.win_length = n_fft
        else:
            self.win_length = win_length
        self.hop_length = hop_length
        self.center = center
        self.normalized = normalized
        self.onesided = onesided
        if window is not None and not hasattr(torch, f"{window}_window"):
            raise ValueError(f"{window} window is not implemented")
        self.window = window

    def extra_repr(self):
        return (
            f"n_fft={self.n_fft}, "
            f"win_length={self.win_length}, "
            f"hop_length={self.hop_length}, "
            f"center={self.center}, "
            f"normalized={self.normalized}, "
            f"onesided={self.onesided}"
        )

    def forward(
        self, input: torch.Tensor, ilens: torch.Tensor = None
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """STFT forward function.

        Args:
            input: (Batch, Nsamples) or (Batch, Nsample, Channels)
            ilens: (Batch)
        Returns:
            output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2)

        """
        bs = input.size(0)
        if input.dim() == 3:
            multi_channel = True
            # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
            input = input.transpose(1, 2).reshape(-1, input.size(1))
        else:
            multi_channel = False

        # NOTE(kamo):
        #   The default behaviour of torch.stft is compatible with librosa.stft
        #   about padding and scaling.
        #   Note that it's different from scipy.signal.stft

        # output: (Batch, Freq, Frames, 2=real_imag)
        # or (Batch, Channel, Freq, Frames, 2=real_imag)
        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(
                self.win_length, dtype=input.dtype, device=input.device
            )
        else:
            window = None

        # For the compatibility of ARM devices, which do not support
        # torch.stft() due to the lack of MKL (on older pytorch versions),
        # there is an alternative replacement implementation with librosa.
        # Note: pytorch >= 1.10.0 now has native support for FFT and STFT
        # on all cpu targets including ARM.
        if is_torch_1_10_plus or input.is_cuda or torch.backends.mkl.is_available():
            stft_kwargs = dict(
                n_fft=self.n_fft,
                win_length=self.win_length,
                hop_length=self.hop_length,
                center=self.center,
                window=window,
                normalized=self.normalized,
                onesided=self.onesided,
            )
            if is_torch_1_7_plus:
                stft_kwargs["return_complex"] = False
            output = torch.stft(input, **stft_kwargs)
        else:
            if self.training:
                raise NotImplementedError(
                    "stft is implemented with librosa on this device, which does not "
                    "support the training mode."
                )

            # use stft_kwargs to flexibly control different PyTorch versions' kwargs
            # note: librosa does not support a win_length that is < n_ftt
            # but the window can be manually padded (see below).
            stft_kwargs = dict(
                n_fft=self.n_fft,
                win_length=self.n_fft,
                hop_length=self.hop_length,
                center=self.center,
                window=window,
                pad_mode="reflect",
            )

            if window is not None:
                # pad the given window to n_fft
                n_pad_left = (self.n_fft - window.shape[0]) // 2
                n_pad_right = self.n_fft - window.shape[0] - n_pad_left
                stft_kwargs["window"] = torch.cat(
                    [torch.zeros(n_pad_left), window, torch.zeros(n_pad_right)], 0
                ).numpy()
            else:
                win_length = (
                    self.win_length if self.win_length is not None else self.n_fft
                )
                stft_kwargs["window"] = torch.ones(win_length)

            output = []
            # iterate over istances in a batch
            for i, instance in enumerate(input):
                stft = librosa.stft(input[i].numpy(), **stft_kwargs)
                output.append(torch.tensor(np.stack([stft.real, stft.imag], -1)))
            output = torch.stack(output, 0)
            if not self.onesided:
                len_conj = self.n_fft - output.shape[1]
                conj = output[:, 1 : 1 + len_conj].flip(1)
                conj[:, :, :, -1].data *= -1
                output = torch.cat([output, conj], 1)
            if self.normalized:
                output = output * (stft_kwargs["window"].shape[0] ** (-0.5))

        # output: (Batch, Freq, Frames, 2=real_imag)
        # -> (Batch, Frames, Freq, 2=real_imag)
        output = output.transpose(1, 2)
        if multi_channel:
            # output: (Batch * Channel, Frames, Freq, 2=real_imag)
            # -> (Batch, Frame, Channel, Freq, 2=real_imag)
            output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(
                1, 2
            )

        if ilens is not None:
            if self.center:
                pad = self.n_fft // 2
                ilens = ilens + 2 * pad

            if is_torch_1_9_plus:
                olens = (
                    torch.div(
                        ilens - self.n_fft, self.hop_length, rounding_mode="trunc"
                    )
                    + 1
                )
            else:
                olens = (ilens - self.n_fft) // self.hop_length + 1
            output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
        else:
            olens = None

        return output, olens

    def inverse(
        self, input: Union[torch.Tensor, ComplexTensor], ilens: torch.Tensor = None
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Inverse STFT.

        Args:
            input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F)
            ilens: (batch,)
        Returns:
            wavs: (batch, samples)
            ilens: (batch,)
        """
        if V(torch.__version__) >= V("1.6.0"):
            istft = torch.functional.istft
        else:
            try:
                import torchaudio
            except ImportError:
                raise ImportError(
                    "Please install torchaudio>=0.3.0 or use torch>=1.6.0"
                )

            if not hasattr(torchaudio.functional, "istft"):
                raise ImportError(
                    "Please install torchaudio>=0.3.0 or use torch>=1.6.0"
                )
            istft = torchaudio.functional.istft

        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            if is_complex(input):
                datatype = input.real.dtype
            else:
                datatype = input.dtype
            window = window_func(self.win_length, dtype=datatype, device=input.device)
        else:
            window = None

        if is_complex(input):
            input = torch.stack([input.real, input.imag], dim=-1)
        elif input.shape[-1] != 2:
            raise TypeError("Invalid input type")
        input = input.transpose(1, 2)
        input = torch.complex(input[:,:,:,0], input[:,:,:,1])

        wavs = istft(
            input,
            n_fft=self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=window,
            center=self.center,
            normalized=self.normalized,
            onesided=self.onesided,
            length=ilens.max() if ilens is not None else ilens,
        )

        return wavs, ilens