Spaces:
Running
Running
File size: 8,810 Bytes
406f22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from typing import Optional, Tuple, Union
import librosa
import numpy as np
import torch
from packaging.version import parse as V
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types
from ..utils.complex_utils import is_complex
from ..utils.inversible_interface import InversibleInterface
from ..utils.nets_utils import make_pad_mask
is_torch_1_10_plus = V(torch.__version__) >= V("1.10.0")
is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")
is_torch_1_7_plus = V(torch.__version__) >= V("1.7")
class Stft(torch.nn.Module, InversibleInterface):
def __init__(
self,
n_fft: int = 512,
win_length: int = None,
hop_length: int = 128,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
):
assert check_argument_types()
super().__init__()
self.n_fft = n_fft
if win_length is None:
self.win_length = n_fft
else:
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.normalized = normalized
self.onesided = onesided
if window is not None and not hasattr(torch, f"{window}_window"):
raise ValueError(f"{window} window is not implemented")
self.window = window
def extra_repr(self):
return (
f"n_fft={self.n_fft}, "
f"win_length={self.win_length}, "
f"hop_length={self.hop_length}, "
f"center={self.center}, "
f"normalized={self.normalized}, "
f"onesided={self.onesided}"
)
def forward(
self, input: torch.Tensor, ilens: torch.Tensor = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""STFT forward function.
Args:
input: (Batch, Nsamples) or (Batch, Nsample, Channels)
ilens: (Batch)
Returns:
output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2)
"""
bs = input.size(0)
if input.dim() == 3:
multi_channel = True
# input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
input = input.transpose(1, 2).reshape(-1, input.size(1))
else:
multi_channel = False
# NOTE(kamo):
# The default behaviour of torch.stft is compatible with librosa.stft
# about padding and scaling.
# Note that it's different from scipy.signal.stft
# output: (Batch, Freq, Frames, 2=real_imag)
# or (Batch, Channel, Freq, Frames, 2=real_imag)
if self.window is not None:
window_func = getattr(torch, f"{self.window}_window")
window = window_func(
self.win_length, dtype=input.dtype, device=input.device
)
else:
window = None
# For the compatibility of ARM devices, which do not support
# torch.stft() due to the lack of MKL (on older pytorch versions),
# there is an alternative replacement implementation with librosa.
# Note: pytorch >= 1.10.0 now has native support for FFT and STFT
# on all cpu targets including ARM.
if is_torch_1_10_plus or input.is_cuda or torch.backends.mkl.is_available():
stft_kwargs = dict(
n_fft=self.n_fft,
win_length=self.win_length,
hop_length=self.hop_length,
center=self.center,
window=window,
normalized=self.normalized,
onesided=self.onesided,
)
if is_torch_1_7_plus:
stft_kwargs["return_complex"] = False
output = torch.stft(input, **stft_kwargs)
else:
if self.training:
raise NotImplementedError(
"stft is implemented with librosa on this device, which does not "
"support the training mode."
)
# use stft_kwargs to flexibly control different PyTorch versions' kwargs
# note: librosa does not support a win_length that is < n_ftt
# but the window can be manually padded (see below).
stft_kwargs = dict(
n_fft=self.n_fft,
win_length=self.n_fft,
hop_length=self.hop_length,
center=self.center,
window=window,
pad_mode="reflect",
)
if window is not None:
# pad the given window to n_fft
n_pad_left = (self.n_fft - window.shape[0]) // 2
n_pad_right = self.n_fft - window.shape[0] - n_pad_left
stft_kwargs["window"] = torch.cat(
[torch.zeros(n_pad_left), window, torch.zeros(n_pad_right)], 0
).numpy()
else:
win_length = (
self.win_length if self.win_length is not None else self.n_fft
)
stft_kwargs["window"] = torch.ones(win_length)
output = []
# iterate over istances in a batch
for i, instance in enumerate(input):
stft = librosa.stft(input[i].numpy(), **stft_kwargs)
output.append(torch.tensor(np.stack([stft.real, stft.imag], -1)))
output = torch.stack(output, 0)
if not self.onesided:
len_conj = self.n_fft - output.shape[1]
conj = output[:, 1 : 1 + len_conj].flip(1)
conj[:, :, :, -1].data *= -1
output = torch.cat([output, conj], 1)
if self.normalized:
output = output * (stft_kwargs["window"].shape[0] ** (-0.5))
# output: (Batch, Freq, Frames, 2=real_imag)
# -> (Batch, Frames, Freq, 2=real_imag)
output = output.transpose(1, 2)
if multi_channel:
# output: (Batch * Channel, Frames, Freq, 2=real_imag)
# -> (Batch, Frame, Channel, Freq, 2=real_imag)
output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(
1, 2
)
if ilens is not None:
if self.center:
pad = self.n_fft // 2
ilens = ilens + 2 * pad
if is_torch_1_9_plus:
olens = (
torch.div(
ilens - self.n_fft, self.hop_length, rounding_mode="trunc"
)
+ 1
)
else:
olens = (ilens - self.n_fft) // self.hop_length + 1
output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
else:
olens = None
return output, olens
def inverse(
self, input: Union[torch.Tensor, ComplexTensor], ilens: torch.Tensor = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Inverse STFT.
Args:
input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F)
ilens: (batch,)
Returns:
wavs: (batch, samples)
ilens: (batch,)
"""
if V(torch.__version__) >= V("1.6.0"):
istft = torch.functional.istft
else:
try:
import torchaudio
except ImportError:
raise ImportError(
"Please install torchaudio>=0.3.0 or use torch>=1.6.0"
)
if not hasattr(torchaudio.functional, "istft"):
raise ImportError(
"Please install torchaudio>=0.3.0 or use torch>=1.6.0"
)
istft = torchaudio.functional.istft
if self.window is not None:
window_func = getattr(torch, f"{self.window}_window")
if is_complex(input):
datatype = input.real.dtype
else:
datatype = input.dtype
window = window_func(self.win_length, dtype=datatype, device=input.device)
else:
window = None
if is_complex(input):
input = torch.stack([input.real, input.imag], dim=-1)
elif input.shape[-1] != 2:
raise TypeError("Invalid input type")
input = input.transpose(1, 2)
input = torch.complex(input[:,:,:,0], input[:,:,:,1])
wavs = istft(
input,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=window,
center=self.center,
normalized=self.normalized,
onesided=self.onesided,
length=ilens.max() if ilens is not None else ilens,
)
return wavs, ilens |