Spaces:
Running
Running
File size: 23,531 Bytes
406f22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import inspect
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import math
from .base_model import BaseModel
from ..layers import activations, normalizations
def GlobLN(nOut):
return nn.GroupNorm(1, nOut, eps=1e-8)
class ConvNormAct(nn.Module):
"""
This class defines the convolution layer with normalization and a PReLU
activation
"""
def __init__(self, nIn, nOut, kSize, stride=1, groups=1):
"""
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
"""
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv1d(
nIn, nOut, kSize, stride=stride, padding=padding, bias=True, groups=groups
)
self.norm = GlobLN(nOut)
self.act = nn.PReLU()
def forward(self, input):
output = self.conv(input)
output = self.norm(output)
return self.act(output)
class ConvNorm(nn.Module):
"""
This class defines the convolution layer with normalization and PReLU activation
"""
def __init__(self, nIn, nOut, kSize, stride=1, groups=1, bias=True):
"""
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
"""
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv1d(
nIn, nOut, kSize, stride=stride, padding=padding, bias=bias, groups=groups
)
self.norm = GlobLN(nOut)
def forward(self, input):
output = self.conv(input)
return self.norm(output)
class ATTConvActNorm(nn.Module):
def __init__(
self,
in_chan: int = 1,
out_chan: int = 1,
kernel_size: int = -1,
stride: int = 1,
groups: int = 1,
dilation: int = 1,
padding: int = None,
norm_type: str = None,
act_type: str = None,
n_freqs: int = -1,
xavier_init: bool = False,
bias: bool = True,
is2d: bool = False,
*args,
**kwargs,
):
super(ATTConvActNorm, self).__init__()
self.in_chan = in_chan
self.out_chan = out_chan
self.kernel_size = kernel_size
self.stride = stride
self.groups = groups
self.dilation = dilation
self.padding = padding
self.norm_type = norm_type
self.act_type = act_type
self.n_freqs = n_freqs
self.xavier_init = xavier_init
self.bias = bias
if self.padding is None:
self.padding = 0 if self.stride > 1 else "same"
if kernel_size > 0:
conv = nn.Conv2d if is2d else nn.Conv1d
self.conv = conv(
in_channels=self.in_chan,
out_channels=self.out_chan,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=self.bias,
)
if self.xavier_init:
nn.init.xavier_uniform_(self.conv.weight)
else:
self.conv = nn.Identity()
self.act = activations.get(self.act_type)()
self.norm = normalizations.get(self.norm_type)(
(self.out_chan, self.n_freqs) if self.norm_type == "LayerNormalization4D" else self.out_chan
)
def forward(self, x: torch.Tensor):
output = self.conv(x)
output = self.act(output)
output = self.norm(output)
return output
def get_config(self):
encoder_args = {}
for k, v in (self.__dict__).items():
if not k.startswith("_") and k != "training":
if not inspect.ismethod(v):
encoder_args[k] = v
return encoder_args
class DilatedConvNorm(nn.Module):
"""
This class defines the dilated convolution with normalized output.
"""
def __init__(self, nIn, nOut, kSize, stride=1, d=1, groups=1):
"""
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optional stride rate for down-sampling
:param d: optional dilation rate
"""
super().__init__()
self.conv = nn.Conv1d(
nIn,
nOut,
kSize,
stride=stride,
dilation=d,
padding=((kSize - 1) // 2) * d,
groups=groups,
)
# self.norm = nn.GroupNorm(1, nOut, eps=1e-08)
self.norm = GlobLN(nOut)
def forward(self, input):
output = self.conv(input)
return self.norm(output)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_size, drop=0.1):
super().__init__()
self.fc1 = ConvNorm(in_features, hidden_size, 1, bias=False)
self.dwconv = nn.Conv1d(
hidden_size, hidden_size, 5, 1, 2, bias=True, groups=hidden_size
)
self.act = nn.ReLU()
self.fc2 = ConvNorm(hidden_size, in_features, 1, bias=False)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class InjectionMultiSum(nn.Module):
def __init__(self, inp: int, oup: int, kernel: int = 1) -> None:
super().__init__()
groups = 1
if inp == oup:
groups = inp
self.local_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
self.global_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
self.global_act = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
self.act = nn.Sigmoid()
def forward(self, x_l, x_g):
"""
x_g: global features
x_l: local features
"""
B, N, T = x_l.shape
local_feat = self.local_embedding(x_l)
global_act = self.global_act(x_g)
sig_act = F.interpolate(self.act(global_act), size=T, mode="nearest")
# sig_act = self.act(global_act)
global_feat = self.global_embedding(x_g)
global_feat = F.interpolate(global_feat, size=T, mode="nearest")
out = local_feat * sig_act + global_feat
return out
class InjectionMulti(nn.Module):
def __init__(self, inp: int, oup: int, kernel: int = 1) -> None:
super().__init__()
groups = 1
if inp == oup:
groups = inp
self.local_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
self.global_act = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
self.act = nn.Sigmoid()
def forward(self, x_l, x_g):
"""
x_g: global features
x_l: local features
"""
B, N, T = x_l.shape
local_feat = self.local_embedding(x_l)
global_act = self.global_act(x_g)
sig_act = F.interpolate(self.act(global_act), size=T, mode="nearest")
# sig_act = self.act(global_act)
out = local_feat * sig_act
return out
class UConvBlock(nn.Module):
"""
This class defines the block which performs successive downsampling and
upsampling in order to be able to analyze the input features in multiple
resolutions.
"""
def __init__(self, out_channels=128, in_channels=512, upsampling_depth=4, model_T=True):
super().__init__()
self.proj_1x1 = ConvNormAct(out_channels, in_channels, 1, stride=1, groups=1)
self.depth = upsampling_depth
self.spp_dw = nn.ModuleList()
self.spp_dw.append(
DilatedConvNorm(
in_channels, in_channels, kSize=5, stride=1, groups=in_channels, d=1
)
)
for i in range(1, upsampling_depth):
self.spp_dw.append(
DilatedConvNorm(
in_channels,
in_channels,
kSize=5,
stride=2,
groups=in_channels,
d=1,
)
)
self.loc_glo_fus = nn.ModuleList([])
for i in range(upsampling_depth):
self.loc_glo_fus.append(InjectionMultiSum(in_channels, in_channels))
self.res_conv = nn.Conv1d(in_channels, out_channels, 1)
self.globalatt = Mlp(in_channels, in_channels, drop=0.1)
self.last_layer = nn.ModuleList([])
for i in range(self.depth - 1):
self.last_layer.append(InjectionMultiSum(in_channels, in_channels, 5))
def forward(self, x):
"""
:param x: input feature map
:return: transformed feature map
"""
residual = x.clone()
# Reduce --> project high-dimensional feature maps to low-dimensional space
output1 = self.proj_1x1(x)
output = [self.spp_dw[0](output1)]
# Do the downsampling process from the previous level
for k in range(1, self.depth):
out_k = self.spp_dw[k](output[-1])
output.append(out_k)
# global features
global_f = torch.zeros(
output[-1].shape, requires_grad=True, device=output1.device
)
for fea in output:
global_f = global_f + F.adaptive_avg_pool1d(
fea, output_size=output[-1].shape[-1]
)
# global_f = global_f + fea
global_f = self.globalatt(global_f) # [B, N, T]
x_fused = []
# Gather them now in reverse order
for idx in range(self.depth):
local = output[idx]
x_fused.append(self.loc_glo_fus[idx](local, global_f))
expanded = None
for i in range(self.depth - 2, -1, -1):
if i == self.depth - 2:
expanded = self.last_layer[i](x_fused[i], x_fused[i - 1])
else:
expanded = self.last_layer[i](x_fused[i], expanded)
# import pdb; pdb.set_trace()
return self.res_conv(expanded) + residual
class MultiHeadSelfAttention2D(nn.Module):
def __init__(
self,
in_chan: int,
n_freqs: int,
n_head: int = 4,
hid_chan: int = 4,
act_type: str = "prelu",
norm_type: str = "LayerNormalization4D",
dim: int = 3,
*args,
**kwargs,
):
super(MultiHeadSelfAttention2D, self).__init__()
self.in_chan = in_chan
self.n_freqs = n_freqs
self.n_head = n_head
self.hid_chan = hid_chan
self.act_type = act_type
self.norm_type = norm_type
self.dim = dim
assert self.in_chan % self.n_head == 0
self.Queries = nn.ModuleList()
self.Keys = nn.ModuleList()
self.Values = nn.ModuleList()
for _ in range(self.n_head):
self.Queries.append(
ATTConvActNorm(
in_chan=self.in_chan,
out_chan=self.hid_chan,
kernel_size=1,
act_type=self.act_type,
norm_type=self.norm_type,
n_freqs=self.n_freqs,
is2d=True,
)
)
self.Keys.append(
ATTConvActNorm(
in_chan=self.in_chan,
out_chan=self.hid_chan,
kernel_size=1,
act_type=self.act_type,
norm_type=self.norm_type,
n_freqs=self.n_freqs,
is2d=True,
)
)
self.Values.append(
ATTConvActNorm(
in_chan=self.in_chan,
out_chan=self.in_chan // self.n_head,
kernel_size=1,
act_type=self.act_type,
norm_type=self.norm_type,
n_freqs=self.n_freqs,
is2d=True,
)
)
self.attn_concat_proj = ATTConvActNorm(
in_chan=self.in_chan,
out_chan=self.in_chan,
kernel_size=1,
act_type=self.act_type,
norm_type=self.norm_type,
n_freqs=self.n_freqs,
is2d=True,
)
def forward(self, x: torch.Tensor):
if self.dim == 4:
x = x.transpose(-2, -1).contiguous()
batch_size, _, time, freq = x.size()
residual = x
all_Q = [q(x) for q in self.Queries] # [B, E, T, F]
all_K = [k(x) for k in self.Keys] # [B, E, T, F]
all_V = [v(x) for v in self.Values] # [B, C/n_head, T, F]
Q = torch.cat(all_Q, dim=0) # [B', E, T, F] B' = B*n_head
K = torch.cat(all_K, dim=0) # [B', E, T, F]
V = torch.cat(all_V, dim=0) # [B', C/n_head, T, F]
Q = Q.transpose(1, 2).flatten(start_dim=2) # [B', T, E*F]
K = K.transpose(1, 2).flatten(start_dim=2) # [B', T, E*F]
V = V.transpose(1, 2) # [B', T, C/n_head, F]
old_shape = V.shape
V = V.flatten(start_dim=2) # [B', T, C*F/n_head]
emb_dim = Q.shape[-1] # C*F/n_head
attn_mat = torch.matmul(Q, K.transpose(1, 2)) / (emb_dim**0.5) # [B', T, T]
attn_mat = F.softmax(attn_mat, dim=2) # [B', T, T]
V = torch.matmul(attn_mat, V) # [B', T, C*F/n_head]
V = V.reshape(old_shape) # [B', T, C/n_head, F]
V = V.transpose(1, 2) # [B', C/n_head, T, F]
emb_dim = V.shape[1] # C/n_head
x = V.view([self.n_head, batch_size, emb_dim, time, freq]) # [n_head, B, C/n_head, T, F]
x = x.transpose(0, 1).contiguous() # [B, n_head, C/n_head, T, F]
x = x.view([batch_size, self.n_head * emb_dim, time, freq]) # [B, C, T, F]
x = self.attn_concat_proj(x) # [B, C, T, F]
x = x + residual
if self.dim == 4:
x = x.transpose(-2, -1).contiguous()
return x
class Recurrent(nn.Module):
def __init__(
self,
out_channels=128,
in_channels=512,
nband=8,
upsampling_depth=3,
n_head=4,
att_hid_chan=4,
kernel_size: int = 8,
stride: int = 1,
_iter=4
):
super().__init__()
self.nband = nband
self.freq_path = nn.ModuleList([
UConvBlock(out_channels, in_channels, upsampling_depth),
MultiHeadSelfAttention2D(out_channels, 1, n_head=n_head, hid_chan=att_hid_chan, act_type="prelu", norm_type="LayerNormalization4D", dim=4),
normalizations.get("LayerNormalization4D")((out_channels, 1))
])
self.frame_path = nn.ModuleList([
UConvBlock(out_channels, in_channels, upsampling_depth),
MultiHeadSelfAttention2D(out_channels, 1, n_head=n_head, hid_chan=att_hid_chan, act_type="prelu", norm_type="LayerNormalization4D", dim=4),
normalizations.get("LayerNormalization4D")((out_channels, 1))
])
self.iter = _iter
self.concat_block = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 1, 1, groups=out_channels), nn.PReLU()
)
def forward(self, x):
# B, nband, N, T
B, nband, N, T = x.shape
x = x.permute(0, 2, 1, 3).contiguous() # B, N, nband, T
mixture = x.clone()
for i in range(self.iter):
if i == 0:
x = self.freq_time_process(x, B, nband, N, T) # B, N, nband, T
else:
x = self.freq_time_process(self.concat_block(mixture + x), B, nband, N, T) # B, N, nband, T
return x.permute(0, 2, 1, 3).contiguous() # B, nband, N, T
def freq_time_process(self, x, B, nband, N, T):
# Process Frequency Path
residual_1 = x.clone()
x = x.permute(0, 3, 1, 2).contiguous() # B, T, N, nband
freq_fea = self.freq_path[0](x.view(B*T, N, nband)) # B*T, N, nband
freq_fea = freq_fea.view(B, T, N, nband).permute(0, 2, 1, 3).contiguous() # B, N, T, nband
freq_fea = self.freq_path[1](freq_fea) # B, N, T, nband
freq_fea = self.freq_path[2](freq_fea) # B, N, T, nband
freq_fea = freq_fea.permute(0, 1, 3, 2).contiguous()
x = freq_fea + residual_1 # B, N, nband, T
# Process Frame Path
residual_2 = x.clone()
x2 = x.permute(0, 2, 1, 3).contiguous()
frame_fea = self.frame_path[0](x2.view(B*nband, N, T)) # B*nband, N, T
frame_fea = frame_fea.view(B, nband, N, T).permute(0, 2, 1, 3).contiguous()
frame_fea = self.frame_path[1](frame_fea) # B, N, nband, T
frame_fea = self.frame_path[2](frame_fea) # B, N, nband, T
x = frame_fea + residual_2 # B, N, nband, T
return x
class TIGER(BaseModel):
def __init__(
self,
out_channels=128,
in_channels=512,
num_blocks=16,
upsampling_depth=4,
att_n_head=4,
att_hid_chan=4,
att_kernel_size=8,
att_stride=1,
win=2048,
stride=512,
num_sources=2,
sample_rate=44100,
):
super(TIGER, self).__init__(sample_rate=sample_rate)
self.sample_rate = sample_rate
self.win = win
self.stride = stride
self.group = self.win // 2
self.enc_dim = self.win // 2 + 1
self.feature_dim = out_channels
self.num_output = num_sources
self.eps = torch.finfo(torch.float32).eps
# 0-1k (25 hop), 1k-2k (100 hop), 2k-4k (250 hop), 4k-8k (500 hop)
bandwidth_25 = int(np.floor(25 / (sample_rate / 2.) * self.enc_dim))
bandwidth_100 = int(np.floor(100 / (sample_rate / 2.) * self.enc_dim))
bandwidth_250 = int(np.floor(250 / (sample_rate / 2.) * self.enc_dim))
bandwidth_500 = int(np.floor(500 / (sample_rate / 2.) * self.enc_dim))
self.band_width = [bandwidth_25]*40
self.band_width += [bandwidth_100]*10
self.band_width += [bandwidth_250]*8
self.band_width += [bandwidth_500]*8
self.band_width.append(self.enc_dim - np.sum(self.band_width))
self.nband = len(self.band_width)
print(self.band_width)
self.BN = nn.ModuleList([])
for i in range(self.nband):
self.BN.append(nn.Sequential(nn.GroupNorm(1, self.band_width[i]*2, self.eps),
nn.Conv1d(self.band_width[i]*2, self.feature_dim, 1)
)
)
self.separator = Recurrent(self.feature_dim, in_channels, self.nband, upsampling_depth, att_n_head, att_hid_chan, att_kernel_size, att_stride, num_blocks)
self.mask = nn.ModuleList([])
for i in range(self.nband):
self.mask.append(nn.Sequential(
nn.PReLU(),
nn.Conv1d(self.feature_dim, self.band_width[i]*4*num_sources, 1, groups=num_sources)
)
)
def pad_input(self, input, window, stride):
"""
Zero-padding input according to window/stride size.
"""
batch_size, nsample = input.shape
# pad the signals at the end for matching the window/stride size
rest = window - (stride + nsample % window) % window
if rest > 0:
pad = torch.zeros(batch_size, rest).type(input.type())
input = torch.cat([input, pad], 1)
pad_aux = torch.zeros(batch_size, stride).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 1)
return input, rest
def forward(self, input):
# input shape: (B, C, T)
was_one_d = False
if input.ndim == 1:
was_one_d = True
input = input.unsqueeze(0).unsqueeze(1)
if input.ndim == 2:
was_one_d = True
input = input.unsqueeze(1)
if input.ndim == 3:
input = input
batch_size, nch, nsample = input.shape
input = input.view(batch_size*nch, -1)
# frequency-domain separation
spec = torch.stft(input, n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device).type(input.type()),
return_complex=True)
# print(spec.shape)
# concat real and imag, split to subbands
spec_RI = torch.stack([spec.real, spec.imag], 1) # B*nch, 2, F, T
subband_spec_RI = []
subband_spec = []
band_idx = 0
for i in range(len(self.band_width)):
subband_spec_RI.append(spec_RI[:,:,band_idx:band_idx+self.band_width[i]].contiguous())
subband_spec.append(spec[:,band_idx:band_idx+self.band_width[i]]) # B*nch, BW, T
band_idx += self.band_width[i]
# normalization and bottleneck
subband_feature = []
for i in range(len(self.band_width)):
subband_feature.append(self.BN[i](subband_spec_RI[i].view(batch_size*nch, self.band_width[i]*2, -1)))
subband_feature = torch.stack(subband_feature, 1) # B, nband, N, T
# import pdb; pdb.set_trace()
# separator
sep_output = self.separator(subband_feature.view(batch_size*nch, self.nband, self.feature_dim, -1)) # B, nband, N, T
sep_output = sep_output.view(batch_size*nch, self.nband, self.feature_dim, -1)
sep_subband_spec = []
for i in range(self.nband):
this_output = self.mask[i](sep_output[:,i]).view(batch_size*nch, 2, 2, self.num_output, self.band_width[i], -1)
this_mask = this_output[:,0] * torch.sigmoid(this_output[:,1]) # B*nch, 2, K, BW, T
this_mask_real = this_mask[:,0] # B*nch, K, BW, T
this_mask_imag = this_mask[:,1] # B*nch, K, BW, T
# force mask sum to 1
this_mask_real_sum = this_mask_real.sum(1).unsqueeze(1) # B*nch, 1, BW, T
this_mask_imag_sum = this_mask_imag.sum(1).unsqueeze(1) # B*nch, 1, BW, T
this_mask_real = this_mask_real - (this_mask_real_sum - 1) / self.num_output
this_mask_imag = this_mask_imag - this_mask_imag_sum / self.num_output
est_spec_real = subband_spec[i].real.unsqueeze(1) * this_mask_real - subband_spec[i].imag.unsqueeze(1) * this_mask_imag # B*nch, K, BW, T
est_spec_imag = subband_spec[i].real.unsqueeze(1) * this_mask_imag + subband_spec[i].imag.unsqueeze(1) * this_mask_real # B*nch, K, BW, T
sep_subband_spec.append(torch.complex(est_spec_real, est_spec_imag))
sep_subband_spec = torch.cat(sep_subband_spec, 2)
output = torch.istft(sep_subband_spec.view(batch_size*nch*self.num_output, self.enc_dim, -1),
n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device).type(input.type()), length=nsample)
output = output.view(batch_size*nch, self.num_output, -1)
# if was_one_d:
# return output.squeeze(0)
return output
def get_model_args(self):
model_args = {"n_sample_rate": 2}
return model_args |