File size: 23,531 Bytes
406f22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import inspect
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import math
from .base_model import BaseModel
from ..layers import activations, normalizations


def GlobLN(nOut):
    return nn.GroupNorm(1, nOut, eps=1e-8)


class ConvNormAct(nn.Module):
    """
    This class defines the convolution layer with normalization and a PReLU
    activation
    """

    def __init__(self, nIn, nOut, kSize, stride=1, groups=1):
        """
        :param nIn: number of input channels
        :param nOut: number of output channels
        :param kSize: kernel size
        :param stride: stride rate for down-sampling. Default is 1
        """
        super().__init__()
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv1d(
            nIn, nOut, kSize, stride=stride, padding=padding, bias=True, groups=groups
        )
        self.norm = GlobLN(nOut)
        self.act = nn.PReLU()

    def forward(self, input):
        output = self.conv(input)
        output = self.norm(output)
        return self.act(output)


class ConvNorm(nn.Module):
    """
    This class defines the convolution layer with normalization and PReLU activation
    """

    def __init__(self, nIn, nOut, kSize, stride=1, groups=1, bias=True):
        """
        :param nIn: number of input channels
        :param nOut: number of output channels
        :param kSize: kernel size
        :param stride: stride rate for down-sampling. Default is 1
        """
        super().__init__()
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv1d(
            nIn, nOut, kSize, stride=stride, padding=padding, bias=bias, groups=groups
        )
        self.norm = GlobLN(nOut)

    def forward(self, input):
        output = self.conv(input)
        return self.norm(output)

class ATTConvActNorm(nn.Module):
    def __init__(
        self,
        in_chan: int = 1,
        out_chan: int = 1,
        kernel_size: int = -1,
        stride: int = 1,
        groups: int = 1,
        dilation: int = 1,
        padding: int = None,
        norm_type: str = None,
        act_type: str = None,
        n_freqs: int = -1,
        xavier_init: bool = False,
        bias: bool = True,
        is2d: bool = False,
        *args,
        **kwargs,
    ):
        super(ATTConvActNorm, self).__init__()
        self.in_chan = in_chan
        self.out_chan = out_chan
        self.kernel_size = kernel_size
        self.stride = stride
        self.groups = groups
        self.dilation = dilation
        self.padding = padding
        self.norm_type = norm_type
        self.act_type = act_type
        self.n_freqs = n_freqs
        self.xavier_init = xavier_init
        self.bias = bias

        if self.padding is None:
            self.padding = 0 if self.stride > 1 else "same"

        if kernel_size > 0:
            conv = nn.Conv2d if is2d else nn.Conv1d

            self.conv = conv(
                in_channels=self.in_chan,
                out_channels=self.out_chan,
                kernel_size=self.kernel_size,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
                bias=self.bias,
            )
            if self.xavier_init:
                nn.init.xavier_uniform_(self.conv.weight)
        else:
            self.conv = nn.Identity()

        self.act = activations.get(self.act_type)()
        self.norm = normalizations.get(self.norm_type)(
            (self.out_chan, self.n_freqs) if self.norm_type == "LayerNormalization4D" else self.out_chan
        )

    def forward(self, x: torch.Tensor):
        output = self.conv(x)
        output = self.act(output)
        output = self.norm(output)
        return output

    def get_config(self):
        encoder_args = {}

        for k, v in (self.__dict__).items():
            if not k.startswith("_") and k != "training":
                if not inspect.ismethod(v):
                    encoder_args[k] = v

        return encoder_args

class DilatedConvNorm(nn.Module):
    """
    This class defines the dilated convolution with normalized output.
    """

    def __init__(self, nIn, nOut, kSize, stride=1, d=1, groups=1):
        """
        :param nIn: number of input channels
        :param nOut: number of output channels
        :param kSize: kernel size
        :param stride: optional stride rate for down-sampling
        :param d: optional dilation rate
        """
        super().__init__()
        self.conv = nn.Conv1d(
            nIn,
            nOut,
            kSize,
            stride=stride,
            dilation=d,
            padding=((kSize - 1) // 2) * d,
            groups=groups,
        )
        # self.norm = nn.GroupNorm(1, nOut, eps=1e-08)
        self.norm = GlobLN(nOut)

    def forward(self, input):
        output = self.conv(input)
        return self.norm(output)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_size, drop=0.1):
        super().__init__()
        self.fc1 = ConvNorm(in_features, hidden_size, 1, bias=False)
        self.dwconv = nn.Conv1d(
            hidden_size, hidden_size, 5, 1, 2, bias=True, groups=hidden_size
        )
        self.act = nn.ReLU()
        self.fc2 = ConvNorm(hidden_size, in_features, 1, bias=False)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class InjectionMultiSum(nn.Module):
    def __init__(self, inp: int, oup: int, kernel: int = 1) -> None:
        super().__init__()
        groups = 1
        if inp == oup:
            groups = inp
        self.local_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
        self.global_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
        self.global_act = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
        self.act = nn.Sigmoid()

    def forward(self, x_l, x_g):
        """
        x_g: global features
        x_l: local features
        """
        B, N, T = x_l.shape
        local_feat = self.local_embedding(x_l)

        global_act = self.global_act(x_g)
        sig_act = F.interpolate(self.act(global_act), size=T, mode="nearest")
        # sig_act = self.act(global_act)

        global_feat = self.global_embedding(x_g)
        global_feat = F.interpolate(global_feat, size=T, mode="nearest")

        out = local_feat * sig_act + global_feat
        return out

class InjectionMulti(nn.Module):
    def __init__(self, inp: int, oup: int, kernel: int = 1) -> None:
        super().__init__()
        groups = 1
        if inp == oup:
            groups = inp
        self.local_embedding = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
        self.global_act = ConvNorm(inp, oup, kernel, groups=groups, bias=False)
        self.act = nn.Sigmoid()

    def forward(self, x_l, x_g):
        """
        x_g: global features
        x_l: local features
        """
        B, N, T = x_l.shape
        local_feat = self.local_embedding(x_l)

        global_act = self.global_act(x_g)
        sig_act = F.interpolate(self.act(global_act), size=T, mode="nearest")
        # sig_act = self.act(global_act)

        out = local_feat * sig_act
        return out

class UConvBlock(nn.Module):
    """
    This class defines the block which performs successive downsampling and
    upsampling in order to be able to analyze the input features in multiple
    resolutions.
    """

    def __init__(self, out_channels=128, in_channels=512, upsampling_depth=4, model_T=True):
        super().__init__()
        self.proj_1x1 = ConvNormAct(out_channels, in_channels, 1, stride=1, groups=1)
        self.depth = upsampling_depth
        self.spp_dw = nn.ModuleList()
        self.spp_dw.append(
            DilatedConvNorm(
                in_channels, in_channels, kSize=5, stride=1, groups=in_channels, d=1
            )
        )
        for i in range(1, upsampling_depth):
            self.spp_dw.append(
                DilatedConvNorm(
                    in_channels,
                    in_channels,
                    kSize=5,
                    stride=2,
                    groups=in_channels,
                    d=1,
                )
            )

        self.loc_glo_fus = nn.ModuleList([])
        for i in range(upsampling_depth):
            self.loc_glo_fus.append(InjectionMultiSum(in_channels, in_channels))

        self.res_conv = nn.Conv1d(in_channels, out_channels, 1)

        self.globalatt = Mlp(in_channels, in_channels, drop=0.1)
        
        self.last_layer = nn.ModuleList([])
        for i in range(self.depth - 1):
            self.last_layer.append(InjectionMultiSum(in_channels, in_channels, 5))

    def forward(self, x):
        """
        :param x: input feature map
        :return: transformed feature map
        """
        residual = x.clone()
        # Reduce --> project high-dimensional feature maps to low-dimensional space
        output1 = self.proj_1x1(x)
        output = [self.spp_dw[0](output1)]

        # Do the downsampling process from the previous level
        for k in range(1, self.depth):
            out_k = self.spp_dw[k](output[-1])
            output.append(out_k)

        # global features
        global_f = torch.zeros(
            output[-1].shape, requires_grad=True, device=output1.device
        )
        for fea in output:
            global_f = global_f + F.adaptive_avg_pool1d(
                fea, output_size=output[-1].shape[-1]
            )
            # global_f = global_f + fea
        global_f = self.globalatt(global_f)  # [B, N, T]

        x_fused = []
        # Gather them now in reverse order
        for idx in range(self.depth):
            local = output[idx]
            x_fused.append(self.loc_glo_fus[idx](local, global_f))

        expanded = None
        for i in range(self.depth - 2, -1, -1):
            if i == self.depth - 2:
                expanded = self.last_layer[i](x_fused[i], x_fused[i - 1])
            else:
                expanded = self.last_layer[i](x_fused[i], expanded)
        # import pdb; pdb.set_trace()
        return self.res_conv(expanded) + residual

class MultiHeadSelfAttention2D(nn.Module):
    def __init__(
        self,
        in_chan: int,
        n_freqs: int,
        n_head: int = 4,
        hid_chan: int = 4,
        act_type: str = "prelu",
        norm_type: str = "LayerNormalization4D",
        dim: int = 3,
        *args,
        **kwargs,
    ):
        super(MultiHeadSelfAttention2D, self).__init__()
        self.in_chan = in_chan
        self.n_freqs = n_freqs
        self.n_head = n_head
        self.hid_chan = hid_chan
        self.act_type = act_type
        self.norm_type = norm_type
        self.dim = dim

        assert self.in_chan % self.n_head == 0

        self.Queries = nn.ModuleList()
        self.Keys = nn.ModuleList()
        self.Values = nn.ModuleList()

        for _ in range(self.n_head):
            self.Queries.append(
                ATTConvActNorm(
                    in_chan=self.in_chan,
                    out_chan=self.hid_chan,
                    kernel_size=1,
                    act_type=self.act_type,
                    norm_type=self.norm_type,
                    n_freqs=self.n_freqs,
                    is2d=True,
                )
            )
            self.Keys.append(
                ATTConvActNorm(
                    in_chan=self.in_chan,
                    out_chan=self.hid_chan,
                    kernel_size=1,
                    act_type=self.act_type,
                    norm_type=self.norm_type,
                    n_freqs=self.n_freqs,
                    is2d=True,
                )
            )
            self.Values.append(
                ATTConvActNorm(
                    in_chan=self.in_chan,
                    out_chan=self.in_chan // self.n_head,
                    kernel_size=1,
                    act_type=self.act_type,
                    norm_type=self.norm_type,
                    n_freqs=self.n_freqs,
                    is2d=True,
                )
            )

        self.attn_concat_proj = ATTConvActNorm(
            in_chan=self.in_chan,
            out_chan=self.in_chan,
            kernel_size=1,
            act_type=self.act_type,
            norm_type=self.norm_type,
            n_freqs=self.n_freqs,
            is2d=True,
        )

    def forward(self, x: torch.Tensor):
        if self.dim == 4:
            x = x.transpose(-2, -1).contiguous()

        batch_size, _, time, freq = x.size()
        residual = x

        all_Q = [q(x) for q in self.Queries]  # [B, E, T, F]
        all_K = [k(x) for k in self.Keys]  # [B, E, T, F]
        all_V = [v(x) for v in self.Values]  # [B, C/n_head, T, F]

        Q = torch.cat(all_Q, dim=0)  # [B', E, T, F]    B' = B*n_head
        K = torch.cat(all_K, dim=0)  # [B', E, T, F]
        V = torch.cat(all_V, dim=0)  # [B', C/n_head, T, F]

        Q = Q.transpose(1, 2).flatten(start_dim=2)  # [B', T, E*F]
        K = K.transpose(1, 2).flatten(start_dim=2)  # [B', T, E*F]
        V = V.transpose(1, 2)  # [B', T, C/n_head, F]
        old_shape = V.shape
        V = V.flatten(start_dim=2)  # [B', T, C*F/n_head]
        emb_dim = Q.shape[-1]  # C*F/n_head

        attn_mat = torch.matmul(Q, K.transpose(1, 2)) / (emb_dim**0.5)  # [B', T, T]
        attn_mat = F.softmax(attn_mat, dim=2)  # [B', T, T]
        V = torch.matmul(attn_mat, V)  # [B', T, C*F/n_head]
        V = V.reshape(old_shape)  # [B', T, C/n_head, F]
        V = V.transpose(1, 2)  # [B', C/n_head, T, F]
        emb_dim = V.shape[1]  # C/n_head

        x = V.view([self.n_head, batch_size, emb_dim, time, freq])  # [n_head, B, C/n_head, T, F]
        x = x.transpose(0, 1).contiguous()  # [B, n_head, C/n_head, T, F]

        x = x.view([batch_size, self.n_head * emb_dim, time, freq])  # [B, C, T, F]
        x = self.attn_concat_proj(x)  # [B, C, T, F]

        x = x + residual

        if self.dim == 4:
            x = x.transpose(-2, -1).contiguous()

        return x
    

class Recurrent(nn.Module):
    def __init__(
        self, 
        out_channels=128, 
        in_channels=512, 
        nband=8,
        upsampling_depth=3,
        n_head=4,
        att_hid_chan=4,
        kernel_size: int = 8, 
        stride: int = 1,
        _iter=4
    ):
        super().__init__()
        self.nband = nband

        self.freq_path = nn.ModuleList([
            UConvBlock(out_channels, in_channels, upsampling_depth),
            MultiHeadSelfAttention2D(out_channels, 1, n_head=n_head, hid_chan=att_hid_chan, act_type="prelu", norm_type="LayerNormalization4D", dim=4),
            normalizations.get("LayerNormalization4D")((out_channels, 1))
        ])
        
        self.frame_path = nn.ModuleList([
            UConvBlock(out_channels, in_channels, upsampling_depth),
            MultiHeadSelfAttention2D(out_channels, 1, n_head=n_head, hid_chan=att_hid_chan, act_type="prelu", norm_type="LayerNormalization4D", dim=4),
            normalizations.get("LayerNormalization4D")((out_channels, 1))
        ])
        
        self.iter = _iter
        self.concat_block = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 1, 1, groups=out_channels), nn.PReLU()
        )

    def forward(self, x):
        # B, nband, N, T
        B, nband, N, T = x.shape
        x = x.permute(0, 2, 1, 3).contiguous() # B, N, nband, T
        mixture = x.clone()
        for i in range(self.iter):
            if i == 0:
                x = self.freq_time_process(x, B, nband, N, T) # B, N, nband, T
            else:
                x = self.freq_time_process(self.concat_block(mixture + x), B, nband, N, T) # B, N, nband, T
                
        return x.permute(0, 2, 1, 3).contiguous() # B, nband, N, T
    
    def freq_time_process(self, x, B, nband, N, T):
        # Process Frequency Path
        residual_1 = x.clone()
        x = x.permute(0, 3, 1, 2).contiguous() # B, T, N, nband
        freq_fea = self.freq_path[0](x.view(B*T, N, nband)) # B*T, N, nband
        freq_fea = freq_fea.view(B, T, N, nband).permute(0, 2, 1, 3).contiguous() # B, N, T, nband
        freq_fea = self.freq_path[1](freq_fea) # B, N, T, nband
        freq_fea = self.freq_path[2](freq_fea) # B, N, T, nband
        freq_fea = freq_fea.permute(0, 1, 3, 2).contiguous()
        x = freq_fea + residual_1 # B, N, nband, T
        # Process Frame Path
        residual_2 = x.clone()
        x2 = x.permute(0, 2, 1, 3).contiguous()
        frame_fea = self.frame_path[0](x2.view(B*nband, N, T)) # B*nband, N, T
        frame_fea = frame_fea.view(B, nband, N, T).permute(0, 2, 1, 3).contiguous()
        frame_fea = self.frame_path[1](frame_fea) # B, N, nband, T
        frame_fea = self.frame_path[2](frame_fea) # B, N, nband, T
        x = frame_fea + residual_2 # B, N, nband, T
        return x
        
class TIGER(BaseModel):
    def __init__(
        self,
        out_channels=128,
        in_channels=512,
        num_blocks=16,
        upsampling_depth=4,
        att_n_head=4,
        att_hid_chan=4,
        att_kernel_size=8, 
        att_stride=1,
        win=2048, 
        stride=512,
        num_sources=2,
        sample_rate=44100,
    ):
        super(TIGER, self).__init__(sample_rate=sample_rate)
        
        self.sample_rate = sample_rate
        self.win = win
        self.stride = stride
        self.group = self.win // 2
        self.enc_dim = self.win // 2 + 1
        self.feature_dim = out_channels
        self.num_output = num_sources
        self.eps = torch.finfo(torch.float32).eps

        # 0-1k (25 hop), 1k-2k (100 hop), 2k-4k (250 hop), 4k-8k (500 hop)
        bandwidth_25 = int(np.floor(25 / (sample_rate / 2.) * self.enc_dim))
        bandwidth_100 = int(np.floor(100 / (sample_rate / 2.) * self.enc_dim))
        bandwidth_250 = int(np.floor(250 / (sample_rate / 2.) * self.enc_dim))
        bandwidth_500 = int(np.floor(500 / (sample_rate / 2.) * self.enc_dim))
        self.band_width = [bandwidth_25]*40
        self.band_width += [bandwidth_100]*10
        self.band_width += [bandwidth_250]*8
        self.band_width += [bandwidth_500]*8
        self.band_width.append(self.enc_dim - np.sum(self.band_width))
        self.nband = len(self.band_width)
        print(self.band_width)
        
        self.BN = nn.ModuleList([])
        for i in range(self.nband):
            self.BN.append(nn.Sequential(nn.GroupNorm(1, self.band_width[i]*2, self.eps),
                                         nn.Conv1d(self.band_width[i]*2, self.feature_dim, 1)
                                        )
                          )

        self.separator = Recurrent(self.feature_dim, in_channels, self.nband, upsampling_depth, att_n_head, att_hid_chan, att_kernel_size, att_stride, num_blocks)       
        
        self.mask = nn.ModuleList([])
        for i in range(self.nband):
            self.mask.append(nn.Sequential(
                                           nn.PReLU(),
                                           nn.Conv1d(self.feature_dim, self.band_width[i]*4*num_sources, 1, groups=num_sources)
                                          )
                            )

    def pad_input(self, input, window, stride):
        """
        Zero-padding input according to window/stride size.
        """
        batch_size, nsample = input.shape

        # pad the signals at the end for matching the window/stride size
        rest = window - (stride + nsample % window) % window
        if rest > 0:
            pad = torch.zeros(batch_size, rest).type(input.type())
            input = torch.cat([input, pad], 1)
        pad_aux = torch.zeros(batch_size, stride).type(input.type())
        input = torch.cat([pad_aux, input, pad_aux], 1)

        return input, rest
        
    def forward(self, input):
        # input shape: (B, C, T)
        was_one_d = False
        if input.ndim == 1:
            was_one_d = True
            input = input.unsqueeze(0).unsqueeze(1)
        if input.ndim == 2:
            was_one_d = True
            input = input.unsqueeze(1)
        if input.ndim == 3:
            input = input
        batch_size, nch, nsample = input.shape
        input = input.view(batch_size*nch, -1)

        # frequency-domain separation
        spec = torch.stft(input, n_fft=self.win, hop_length=self.stride, 
                          window=torch.hann_window(self.win).to(input.device).type(input.type()),
                          return_complex=True)

        # print(spec.shape)

        # concat real and imag, split to subbands
        spec_RI = torch.stack([spec.real, spec.imag], 1)  # B*nch, 2, F, T
        subband_spec_RI = []
        subband_spec = []
        band_idx = 0
        for i in range(len(self.band_width)):
            subband_spec_RI.append(spec_RI[:,:,band_idx:band_idx+self.band_width[i]].contiguous())
            subband_spec.append(spec[:,band_idx:band_idx+self.band_width[i]])  # B*nch, BW, T
            band_idx += self.band_width[i]

        # normalization and bottleneck
        subband_feature = []
        for i in range(len(self.band_width)):
            subband_feature.append(self.BN[i](subband_spec_RI[i].view(batch_size*nch, self.band_width[i]*2, -1)))
        subband_feature = torch.stack(subband_feature, 1)  # B, nband, N, T
        # import pdb; pdb.set_trace()
        # separator
        sep_output = self.separator(subband_feature.view(batch_size*nch, self.nband, self.feature_dim, -1))  # B, nband, N, T
        sep_output = sep_output.view(batch_size*nch, self.nband, self.feature_dim, -1)
        
        sep_subband_spec = []
        for i in range(self.nband):
            this_output = self.mask[i](sep_output[:,i]).view(batch_size*nch, 2, 2, self.num_output, self.band_width[i], -1)
            this_mask = this_output[:,0] * torch.sigmoid(this_output[:,1])  # B*nch, 2, K, BW, T
            this_mask_real = this_mask[:,0]  # B*nch, K, BW, T
            this_mask_imag = this_mask[:,1]  # B*nch, K, BW, T
            # force mask sum to 1
            this_mask_real_sum = this_mask_real.sum(1).unsqueeze(1)  # B*nch, 1, BW, T
            this_mask_imag_sum = this_mask_imag.sum(1).unsqueeze(1)  # B*nch, 1, BW, T
            this_mask_real = this_mask_real - (this_mask_real_sum - 1) / self.num_output
            this_mask_imag = this_mask_imag - this_mask_imag_sum / self.num_output
            est_spec_real = subband_spec[i].real.unsqueeze(1) * this_mask_real - subband_spec[i].imag.unsqueeze(1) * this_mask_imag  # B*nch, K, BW, T
            est_spec_imag = subband_spec[i].real.unsqueeze(1) * this_mask_imag + subband_spec[i].imag.unsqueeze(1) * this_mask_real  # B*nch, K, BW, T
            sep_subband_spec.append(torch.complex(est_spec_real, est_spec_imag))
        sep_subband_spec = torch.cat(sep_subband_spec, 2)
        
        output = torch.istft(sep_subband_spec.view(batch_size*nch*self.num_output, self.enc_dim, -1), 
                             n_fft=self.win, hop_length=self.stride,
                             window=torch.hann_window(self.win).to(input.device).type(input.type()), length=nsample)
        output = output.view(batch_size*nch, self.num_output, -1)
        # if was_one_d:
        #     return output.squeeze(0)
        return output

    def get_model_args(self):
        model_args = {"n_sample_rate": 2}
        return model_args