fffiloni's picture
Migrated from GitHub
406f22d verified
import torch
import math
import inspect
from torch import nn
from torch import Tensor
from typing import Tuple
from typing import Optional
from torch.nn.functional import fold, unfold
import numpy as np
from . import activations, normalizations
from .normalizations import gLN
def has_arg(fn, name):
"""Checks if a callable accepts a given keyword argument.
Args:
fn (callable): Callable to inspect.
name (str): Check if ``fn`` can be called with ``name`` as a keyword
argument.
Returns:
bool: whether ``fn`` accepts a ``name`` keyword argument.
"""
signature = inspect.signature(fn)
parameter = signature.parameters.get(name)
if parameter is None:
return False
return parameter.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)
class SingleRNN(nn.Module):
"""Module for a RNN block.
Inspired from https://github.com/yluo42/TAC/blob/master/utility/models.py
Licensed under CC BY-NC-SA 3.0 US.
Args:
rnn_type (str): Select from ``'RNN'``, ``'LSTM'``, ``'GRU'``. Can
also be passed in lowercase letters.
input_size (int): Dimension of the input feature. The input should have
shape [batch, seq_len, input_size].
hidden_size (int): Dimension of the hidden state.
n_layers (int, optional): Number of layers used in RNN. Default is 1.
dropout (float, optional): Dropout ratio. Default is 0.
bidirectional (bool, optional): Whether the RNN layers are
bidirectional. Default is ``False``.
"""
def __init__(
self,
rnn_type,
input_size,
hidden_size,
n_layers=1,
dropout=0,
bidirectional=False,
):
super(SingleRNN, self).__init__()
assert rnn_type.upper() in ["RNN", "LSTM", "GRU"]
rnn_type = rnn_type.upper()
self.rnn_type = rnn_type
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.dropout = dropout
self.bidirectional = bidirectional
self.rnn = getattr(nn, rnn_type)(
input_size,
hidden_size,
num_layers=n_layers,
dropout=dropout,
batch_first=True,
bidirectional=bool(bidirectional),
)
@property
def output_size(self):
return self.hidden_size * (2 if self.bidirectional else 1)
def forward(self, inp):
""" Input shape [batch, seq, feats] """
self.rnn.flatten_parameters() # Enables faster multi-GPU training.
output = inp
rnn_output, _ = self.rnn(output)
return rnn_output
class LSTMBlockTF(nn.Module):
def __init__(
self,
in_chan,
hid_size,
norm_type="gLN",
bidirectional=True,
rnn_type="LSTM",
num_layers=1,
dropout=0,
):
super(LSTMBlockTF, self).__init__()
self.RNN = SingleRNN(
rnn_type,
in_chan,
hid_size,
num_layers,
dropout=dropout,
bidirectional=bidirectional,
)
self.linear = nn.Linear(self.RNN.output_size, in_chan)
self.norm = normalizations.get(norm_type)(in_chan)
def forward(self, x):
B, F, T = x.size()
output = self.RNN(x.transpose(1, 2)) # B, T, N
output = self.linear(output)
output = output.transpose(1, -1) # B, N, T
output = self.norm(output)
return output + x
# ===================Transformer======================
class Linear(nn.Module):
"""
Wrapper class of torch.nn.Linear
Weight initialize by xavier initialization and bias initialize to zeros.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
nn.init.xavier_uniform_(self.linear.weight)
if bias:
nn.init.zeros_(self.linear.bias)
def forward(self, x):
return self.linear(x)
class Swish(nn.Module):
"""
Swish is a smooth, non-monotonic function that consistently matches or outperforms ReLU on deep networks applied
to a variety of challenging domains such as Image classification and Machine translation.
"""
def __init__(self):
super(Swish, self).__init__()
def forward(self, inputs):
return inputs * inputs.sigmoid()
class Transpose(nn.Module):
""" Wrapper class of torch.transpose() for Sequential module. """
def __init__(self, shape: tuple):
super(Transpose, self).__init__()
self.shape = shape
def forward(self, x: Tensor) -> Tensor:
return x.transpose(*self.shape)
class GLU(nn.Module):
"""
The gating mechanism is called Gated Linear Units (GLU), which was first introduced for natural language processing
in the paper “Language Modeling with Gated Convolutional Networks”
"""
def __init__(self, dim: int) -> None:
super(GLU, self).__init__()
self.dim = dim
def forward(self, inputs: Tensor) -> Tensor:
outputs, gate = inputs.chunk(2, dim=self.dim)
return outputs * gate.sigmoid()
class FeedForwardModule(nn.Module):
def __init__(
self, encoder_dim: int = 512, expansion_factor: int = 4, dropout_p: float = 0.1,
) -> None:
super(FeedForwardModule, self).__init__()
self.sequential = nn.Sequential(
nn.LayerNorm(encoder_dim),
Linear(encoder_dim, encoder_dim * expansion_factor, bias=True),
Swish(),
nn.Dropout(p=dropout_p),
Linear(encoder_dim * expansion_factor, encoder_dim, bias=True),
nn.Dropout(p=dropout_p),
)
def forward(self, inputs):
return self.sequential(inputs)
class PositionalEncoding(nn.Module):
"""
Positional Encoding proposed in "Attention Is All You Need".
Since transformer contains no recurrence and no convolution, in order for the model to make
use of the order of the sequence, we must add some positional information.
"Attention Is All You Need" use sine and cosine functions of different frequencies:
PE_(pos, 2i) = sin(pos / power(10000, 2i / d_model))
PE_(pos, 2i+1) = cos(pos / power(10000, 2i / d_model))
"""
def __init__(self, d_model: int = 512, max_len: int = 10000) -> None:
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model, requires_grad=False)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, length: int) -> Tensor:
return self.pe[:, :length]
class RelativeMultiHeadAttention(nn.Module):
"""
Multi-head attention with relative positional encoding.
This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
dropout_p (float): probability of dropout
Inputs: query, key, value, pos_embedding, mask
- **query** (batch, time, dim): Tensor containing query vector
- **key** (batch, time, dim): Tensor containing key vector
- **value** (batch, time, dim): Tensor containing value vector
- **pos_embedding** (batch, time, dim): Positional embedding tensor
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs**: Tensor produces by relative multi head attention module.
"""
def __init__(
self, d_model: int = 512, num_heads: int = 16, dropout_p: float = 0.1,
):
super(RelativeMultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model % num_heads should be zero."
self.d_model = d_model
self.d_head = int(d_model / num_heads)
self.num_heads = num_heads
self.sqrt_dim = math.sqrt(d_model)
self.query_proj = Linear(d_model, d_model)
self.key_proj = Linear(d_model, d_model)
self.value_proj = Linear(d_model, d_model)
self.pos_proj = Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(p=dropout_p)
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
torch.nn.init.xavier_uniform_(self.u_bias)
torch.nn.init.xavier_uniform_(self.v_bias)
self.out_proj = Linear(d_model, d_model)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
pos_embedding: Tensor,
mask: Optional[Tensor] = None,
) -> Tensor:
batch_size = value.size(0)
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
key = (
self.key_proj(key)
.view(batch_size, -1, self.num_heads, self.d_head)
.permute(0, 2, 1, 3)
)
value = (
self.value_proj(value)
.view(batch_size, -1, self.num_heads, self.d_head)
.permute(0, 2, 1, 3)
)
pos_embedding = self.pos_proj(pos_embedding).view(
batch_size, -1, self.num_heads, self.d_head
)
content_score = torch.matmul(
(query + self.u_bias).transpose(1, 2), key.transpose(2, 3)
)
pos_score = torch.matmul(
(query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1)
)
pos_score = self._relative_shift(pos_score)
score = (content_score + pos_score) / self.sqrt_dim
if mask is not None:
mask = mask.unsqueeze(1)
score.masked_fill_(mask, -1e9)
attn = torch.nn.functional.softmax(score, -1)
attn = self.dropout(attn)
context = torch.matmul(attn, value).transpose(1, 2)
context = context.contiguous().view(batch_size, -1, self.d_model)
return self.out_proj(context)
def _relative_shift(self, pos_score: Tensor) -> Tensor:
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
padded_pos_score = padded_pos_score.view(
batch_size, num_heads, seq_length2 + 1, seq_length1
)
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
return pos_score
class MultiHeadedSelfAttentionModule(nn.Module):
"""
Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL,
the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention
module to generalize better on different input length and the resulting encoder is more robust to the variance of
the utterance length. Conformer use prenorm residual units with dropout which helps training
and regularizing deeper models.
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
dropout_p (float): probability of dropout
device (torch.device): torch device (cuda or cpu)
Inputs: inputs, mask
- **inputs** (batch, time, dim): Tensor containing input vector
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module.
"""
def __init__(
self, d_model: int, num_heads: int, dropout_p: float = 0.1, is_casual=True
):
super(MultiHeadedSelfAttentionModule, self).__init__()
self.positional_encoding = PositionalEncoding(d_model)
self.layer_norm = nn.LayerNorm(d_model)
self.attention = RelativeMultiHeadAttention(d_model, num_heads, dropout_p)
self.dropout = nn.Dropout(p=dropout_p)
self.is_casual = is_casual
def forward(self, inputs: Tensor):
batch_size, seq_length, _ = inputs.size()
pos_embedding = self.positional_encoding(seq_length)
pos_embedding = pos_embedding.repeat(batch_size, 1, 1)
mask = None
if self.is_casual:
mask = torch.triu(
torch.ones((seq_length, seq_length), dtype=torch.uint8).to(
inputs.device
),
diagonal=1,
)
mask = mask.unsqueeze(0).expand(batch_size, -1, -1).bool() # [B, L, L]
inputs = self.layer_norm(inputs)
outputs = self.attention(
inputs, inputs, inputs, pos_embedding=pos_embedding, mask=mask
)
return self.dropout(outputs)
class ResidualConnectionModule(nn.Module):
"""
Residual Connection Module.
outputs = (module(inputs) x module_factor + inputs x input_factor)
"""
def __init__(
self, module: nn.Module, module_factor: float = 1.0, input_factor: float = 1.0
):
super(ResidualConnectionModule, self).__init__()
self.module = module
self.module_factor = module_factor
self.input_factor = input_factor
def forward(self, inputs):
return (self.module(inputs) * self.module_factor) + (inputs * self.input_factor)
class DepthwiseConv1d(nn.Module):
"""
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer,
this operation is termed in literature as depthwise convolution.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by depthwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
bias: bool = False,
is_casual: bool = True,
) -> None:
super(DepthwiseConv1d, self).__init__()
assert (
out_channels % in_channels == 0
), "out_channels should be constant multiple of in_channels"
if is_casual:
padding = kernel_size - 1
else:
padding = (kernel_size - 1) // 2
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=in_channels,
stride=stride,
padding=padding,
bias=bias,
)
self.is_casual = is_casual
self.kernel_size = kernel_size
def forward(self, inputs: Tensor) -> Tensor:
if self.is_casual:
return self.conv(inputs)[:, :, : -(self.kernel_size - 1)]
return self.conv(inputs)
class PointwiseConv1d(nn.Module):
"""
When kernel size == 1 conv1d, this operation is termed in literature as pointwise convolution.
This operation often used to match dimensions.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by pointwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
padding: int = 0,
bias: bool = True,
) -> None:
super(PointwiseConv1d, self).__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, inputs: Tensor) -> Tensor:
return self.conv(inputs)
class ConformerConvModule(nn.Module):
"""
Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU).
This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
to aid training deep models.
Args:
in_channels (int): Number of channels in the input
kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31
dropout_p (float, optional): probability of dropout
device (torch.device): torch device (cuda or cpu)
Inputs: inputs
inputs (batch, time, dim): Tensor contains input sequences
Outputs: outputs
outputs (batch, time, dim): Tensor produces by conformer convolution module.
"""
def __init__(
self,
in_channels: int,
kernel_size: int = 31,
expansion_factor: int = 2,
dropout_p: float = 0.1,
is_casual: bool = True,
) -> None:
super(ConformerConvModule, self).__init__()
assert (
kernel_size - 1
) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2"
self.sequential = nn.Sequential(
nn.LayerNorm(in_channels),
Transpose(shape=(1, 2)),
PointwiseConv1d(
in_channels,
in_channels * expansion_factor,
stride=1,
padding=0,
bias=True,
),
GLU(dim=1),
DepthwiseConv1d(
in_channels, in_channels, kernel_size, stride=1, is_casual=is_casual
),
nn.BatchNorm1d(in_channels),
Swish(),
PointwiseConv1d(in_channels, in_channels, stride=1, padding=0, bias=True),
nn.Dropout(p=dropout_p),
)
def forward(self, inputs: Tensor) -> Tensor:
return self.sequential(inputs).transpose(1, 2)
class TransformerLayer(nn.Module):
def __init__(
self, in_chan=128, n_head=8, n_att=1, dropout=0.1, max_len=500, is_casual=True
):
super(TransformerLayer, self).__init__()
self.in_chan = in_chan
self.n_head = n_head
self.dropout = dropout
self.max_len = max_len
self.n_att = n_att
self.seq = nn.Sequential(
ResidualConnectionModule(
FeedForwardModule(in_chan, expansion_factor=4, dropout_p=dropout),
module_factor=0.5,
),
ResidualConnectionModule(
MultiHeadedSelfAttentionModule(in_chan, n_head, dropout, is_casual)
),
ResidualConnectionModule(
ConformerConvModule(in_chan, 31, 2, dropout, is_casual=is_casual)
),
ResidualConnectionModule(
FeedForwardModule(in_chan, expansion_factor=4, dropout_p=dropout),
module_factor=0.5,
),
nn.LayerNorm(in_chan),
)
def forward(self, x):
return self.seq(x)
class TransformerBlockTF(nn.Module):
def __init__(
self,
in_chan,
n_head=8,
n_att=1,
dropout=0.1,
max_len=500,
norm_type="cLN",
is_casual=True,
):
super(TransformerBlockTF, self).__init__()
self.transformer = TransformerLayer(
in_chan, n_head, n_att, dropout, max_len, is_casual
)
self.norm = normalizations.get(norm_type)(in_chan)
def forward(self, x):
B, F, T = x.size()
output = self.transformer(x.permute(0, 2, 1).contiguous()) # B, T, N
output = output.permute(0, 2, 1).contiguous() # B, N, T
output = self.norm(output)
return output + x
# ====================================================
class DPRNNBlock(nn.Module):
def __init__(
self,
in_chan,
hid_size,
norm_type="gLN",
bidirectional=True,
rnn_type="LSTM",
num_layers=1,
dropout=0,
):
super(DPRNNBlock, self).__init__()
self.intra_RNN = SingleRNN(
rnn_type,
in_chan,
hid_size,
num_layers,
dropout=dropout,
bidirectional=True,
)
self.inter_RNN = SingleRNN(
rnn_type,
in_chan,
hid_size,
num_layers,
dropout=dropout,
bidirectional=bidirectional,
)
self.intra_linear = nn.Linear(self.intra_RNN.output_size, in_chan)
self.intra_norm = normalizations.get(norm_type)(in_chan)
self.inter_linear = nn.Linear(self.inter_RNN.output_size, in_chan)
self.inter_norm = normalizations.get(norm_type)(in_chan)
def forward(self, x):
""" Input shape : [batch, feats, chunk_size, num_chunks] """
B, N, K, L = x.size()
output = x # for skip connection
# Intra-chunk processing
x = x.transpose(1, -1).reshape(B * L, K, N)
x = self.intra_RNN(x)
x = self.intra_linear(x)
x = x.reshape(B, L, K, N).transpose(1, -1)
x = self.intra_norm(x)
output = output + x
# Inter-chunk processing
x = output.transpose(1, 2).transpose(2, -1).reshape(B * K, L, N)
x = self.inter_RNN(x)
x = self.inter_linear(x)
x = x.reshape(B, K, L, N).transpose(1, -1).transpose(2, -1).contiguous()
x = self.inter_norm(x)
return output + x
class DPRNN(nn.Module):
def __init__(
self,
in_chan,
n_src,
out_chan=None,
bn_chan=128,
hid_size=128,
chunk_size=100,
hop_size=None,
n_repeats=6,
norm_type="gLN",
mask_act="relu",
bidirectional=True,
rnn_type="LSTM",
num_layers=1,
dropout=0,
):
super(DPRNN, self).__init__()
self.in_chan = in_chan
out_chan = out_chan if out_chan is not None else in_chan
self.out_chan = out_chan
self.bn_chan = bn_chan
self.hid_size = hid_size
self.chunk_size = chunk_size
hop_size = hop_size if hop_size is not None else chunk_size // 2
self.hop_size = hop_size
self.n_repeats = n_repeats
self.n_src = n_src
self.norm_type = norm_type
self.mask_act = mask_act
self.bidirectional = bidirectional
self.rnn_type = rnn_type
self.num_layers = num_layers
self.dropout = dropout
layer_norm = normalizations.get(norm_type)(in_chan)
bottleneck_conv = nn.Conv1d(in_chan, bn_chan, 1)
self.bottleneck = nn.Sequential(layer_norm, bottleneck_conv)
# Succession of DPRNNBlocks.
net = []
for x in range(self.n_repeats):
net += [
DPRNNBlock(
bn_chan,
hid_size,
norm_type=norm_type,
bidirectional=bidirectional,
rnn_type=rnn_type,
num_layers=num_layers,
dropout=dropout,
)
]
self.net = nn.Sequential(*net)
# Masking in 3D space
net_out_conv = nn.Conv2d(bn_chan, n_src * bn_chan, 1)
self.first_out = nn.Sequential(nn.PReLU(), net_out_conv)
# Gating and masking in 2D space (after fold)
self.net_out = nn.Sequential(nn.Conv1d(bn_chan, bn_chan, 1), nn.Tanh())
self.net_gate = nn.Sequential(nn.Conv1d(bn_chan, bn_chan, 1), nn.Sigmoid())
self.mask_net = nn.Conv1d(bn_chan, out_chan, 1, bias=False)
# Get activation function.
mask_nl_class = activations.get(mask_act)
# For softmax, feed the source dimension.
if has_arg(mask_nl_class, "dim"):
self.output_act = mask_nl_class(dim=1)
else:
self.output_act = mask_nl_class()
def forward(self, mixture_w):
r"""Forward.
Args:
mixture_w (:class:`torch.Tensor`): Tensor of shape $(batch, nfilters, nframes)$
Returns:
:class:`torch.Tensor`: estimated mask of shape $(batch, nsrc, nfilters, nframes)$
"""
batch, n_filters, n_frames = mixture_w.size()
output = self.bottleneck(mixture_w) # [batch, bn_chan, n_frames]
output = unfold(
output.unsqueeze(-1),
kernel_size=(self.chunk_size, 1),
padding=(self.chunk_size, 0),
stride=(self.hop_size, 1),
)
n_chunks = output.shape[-1]
output = output.reshape(batch, self.bn_chan, self.chunk_size, n_chunks)
# Apply stacked DPRNN Blocks sequentially
output = self.net(output)
# Map to sources with kind of 2D masks
output = self.first_out(output)
output = output.reshape(
batch * self.n_src, self.bn_chan, self.chunk_size, n_chunks
)
# Overlap and add:
# [batch, out_chan, chunk_size, n_chunks] -> [batch, out_chan, n_frames]
to_unfold = self.bn_chan * self.chunk_size
output = fold(
output.reshape(batch * self.n_src, to_unfold, n_chunks),
(n_frames, 1),
kernel_size=(self.chunk_size, 1),
padding=(self.chunk_size, 0),
stride=(self.hop_size, 1),
)
# Apply gating
output = output.reshape(batch * self.n_src, self.bn_chan, -1)
# output = self.net_out(output) * self.net_gate(output)
# Compute mask
score = self.mask_net(output)
est_mask = self.output_act(score)
est_mask = est_mask.view(batch, self.n_src, self.out_chan, n_frames)
return est_mask
def get_config(self):
config = {
"in_chan": self.in_chan,
"out_chan": self.out_chan,
"bn_chan": self.bn_chan,
"hid_size": self.hid_size,
"chunk_size": self.chunk_size,
"hop_size": self.hop_size,
"n_repeats": self.n_repeats,
"n_src": self.n_src,
"norm_type": self.norm_type,
"mask_act": self.mask_act,
"bidirectional": self.bidirectional,
"rnn_type": self.rnn_type,
"num_layers": self.num_layers,
"dropout": self.dropout,
}
return config
class DPRNNLinear(nn.Module):
def __init__(
self,
in_chan,
n_src,
out_chan=None,
bn_chan=128,
hid_size=128,
chunk_size=100,
hop_size=None,
n_repeats=6,
norm_type="gLN",
mask_act="relu",
bidirectional=True,
rnn_type="LSTM",
num_layers=1,
dropout=0,
):
super(DPRNNLinear, self).__init__()
self.in_chan = in_chan
out_chan = out_chan if out_chan is not None else in_chan
self.out_chan = out_chan
self.bn_chan = bn_chan
self.hid_size = hid_size
self.chunk_size = chunk_size
hop_size = hop_size if hop_size is not None else chunk_size // 2
self.hop_size = hop_size
self.n_repeats = n_repeats
self.n_src = n_src
self.norm_type = norm_type
self.mask_act = mask_act
self.bidirectional = bidirectional
self.rnn_type = rnn_type
self.num_layers = num_layers
self.dropout = dropout
layer_norm = normalizations.get(norm_type)(in_chan)
bottleneck_conv = nn.Conv1d(in_chan, bn_chan, 1)
self.bottleneck = nn.Sequential(layer_norm, bottleneck_conv)
# Succession of DPRNNBlocks.
net = []
for x in range(self.n_repeats):
net += [
DPRNNBlock(
bn_chan,
hid_size,
norm_type=norm_type,
bidirectional=bidirectional,
rnn_type=rnn_type,
num_layers=num_layers,
dropout=dropout,
)
]
self.net = nn.Sequential(*net)
# Masking in 3D space
net_out_conv = nn.Conv2d(bn_chan, n_src * bn_chan, 1)
self.first_out = nn.Sequential(nn.PReLU(), net_out_conv)
# Gating and masking in 2D space (after fold)
# self.net_out = nn.Sequential(nn.Conv1d(bn_chan, bn_chan, 1), nn.Tanh())
self.net_out = nn.Linear(bn_chan, out_chan)
self.net_gate = nn.Sequential(nn.Conv1d(bn_chan, bn_chan, 1), nn.Sigmoid())
self.mask_net = nn.Conv1d(bn_chan, out_chan, 1, bias=False)
# Get activation function.
mask_nl_class = activations.get(mask_act)
# For softmax, feed the source dimension.
if has_arg(mask_nl_class, "dim"):
self.output_act = mask_nl_class(dim=1)
else:
self.output_act = mask_nl_class()
def forward(self, mixture_w):
r"""Forward.
Args:
mixture_w (:class:`torch.Tensor`): Tensor of shape $(batch, nfilters, nframes)$
Returns:
:class:`torch.Tensor`: estimated mask of shape $(batch, nsrc, nfilters, nframes)$
"""
batch, n_filters, n_frames = mixture_w.size()
output = self.bottleneck(mixture_w) # [batch, bn_chan, n_frames]
output = unfold(
output.unsqueeze(-1),
kernel_size=(self.chunk_size, 1),
padding=(self.chunk_size, 0),
stride=(self.hop_size, 1),
)
n_chunks = output.shape[-1]
output = output.reshape(batch, self.bn_chan, self.chunk_size, n_chunks)
# Apply stacked DPRNN Blocks sequentially
output = self.net(output)
# Map to sources with kind of 2D masks
output = self.first_out(output)
output = output.reshape(
batch * self.n_src, self.bn_chan, self.chunk_size, n_chunks
)
# Overlap and add:
# [batch, out_chan, chunk_size, n_chunks] -> [batch, out_chan, n_frames]
to_unfold = self.bn_chan * self.chunk_size
output = fold(
output.reshape(batch * self.n_src, to_unfold, n_chunks),
(n_frames, 1),
kernel_size=(self.chunk_size, 1),
padding=(self.chunk_size, 0),
stride=(self.hop_size, 1),
)
# Apply gating
output = output.reshape(batch * self.n_src, self.bn_chan, -1)
output = self.net_out(output.transpose(1, 1)).transpose(1, 2) * self.net_gate(
output
)
# Compute mask
score = self.mask_net(output)
est_mask = self.output_act(score)
est_mask = est_mask.view(batch, self.n_src, self.out_chan, n_frames)
return est_mask
def get_config(self):
config = {
"in_chan": self.in_chan,
"out_chan": self.out_chan,
"bn_chan": self.bn_chan,
"hid_size": self.hid_size,
"chunk_size": self.chunk_size,
"hop_size": self.hop_size,
"n_repeats": self.n_repeats,
"n_src": self.n_src,
"norm_type": self.norm_type,
"mask_act": self.mask_act,
"bidirectional": self.bidirectional,
"rnn_type": self.rnn_type,
"num_layers": self.num_layers,
"dropout": self.dropout,
}
return config