File size: 13,568 Bytes
406f22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# import torch
# import torch.nn as nn
# from itertools import combinations
# from pprint import pprint


# def parts_mixgen(lists):
#     parts = []
#     for k in range(len(lists) + 1):
#         for sublist in combinations(lists, k):
#             rest = []
#             if sublist != () and len(sublist) != len(lists):
#                 for item in lists:
#                     if item not in sublist:
#                         rest.append(item)
#                 parts.append([sublist, rest])
#     return parts


# def parts_mixgen_bisection(lists, srcmix, mix):
#     if mix == 0:
#         yield []
#     else:
#         for c in combinations(lists, srcmix):
#             rest = [x for x in lists if x not in c]
#             for r in parts_mixgen_bisection(rest, srcmix, mix - 1):
#                 yield [list(c), *r]


# class MixIT(nn.Module):
#     def __init__(self, loss_func, bisection=True):
#         super().__init__()
#         self.loss_func = loss_func
#         self.bisection = bisection

#     def forward(self, ests, targets, return_ests=None, **kwargs):
#         assert ests.shape[0] == targets.shape[0]
#         assert ests.shape[-1] == targets.shape[-1]

#         if self.bisection:
#             loss, min_loss_idx, parts = self.mixit_bisection(self.loss_func, ests, targets, **kwargs)
#         else:
#             loss, min_loss_idx, parts = self.mixit_non_bisection(self.loss_func, ests, targets, **kwargs)

#         mean_loss = torch.mean(loss)
#         if not return_ests:
#             return mean_loss

#         reordered = self.reorder_source(ests, targets, min_loss_idx, parts)
#         return mean_loss, reordered

#     def mixit_bisection(self, loss_func, ests, targets, **kwargs):
#         n_mix = targets.shape[1]
#         n_src = ests.shape[1]
#         srcmix = n_src // n_mix

#         parts = parts_mixgen_bisection(range(n_src), srcmix, n_mix)

#         loss_lists = []
#         for part in parts:
#             ests_mix = torch.stack([ests[:, i, :].sum(1) for i in part], dim=1)
#             loss = loss_func(ests_mix, targets, **kwargs)
#             loss_lists.append(loss[:, None])
#         loss_lists = torch.cat(loss_lists, dim=1)
#         min_loss, min_loss_indexes = torch.min(loss_lists, dim=1, keepdim=True)
#         return min_loss, min_loss_indexes, parts

#     def mixit_non_bisection(self, loss_func, ests, targets, **kwargs):
#         n_mix = targets.shape[1]
#         n_src = ests.shape[1]

#         parts = parts_mixgen(range(n_src))

#         loss_lists = []
#         for part in parts:
#             ests_mix = torch.stack([ests[:, i, :].sum(1) for i in part], dim=1)
#             loss = loss_func(ests_mix, targets, **kwargs)
#             loss_lists.append(loss[:, None])
#         loss_lists = torch.cat(loss_lists, dim=1)
#         min_loss, min_loss_indexes = torch.min(loss_lists, dim=1, keepdim=True)
#         return min_loss, min_loss_indexes, parts

#     def reoder_source(self, ests, targets, min_loss_idx, parts, **kwargs):
#         ordered = torch.zeros_like(targets)
#         for b, idx in enumerate(min_loss_idx):
#             right_partition = parts[idx]
#             ordered[b, :, :] = torch.stack(
#                 [ests[b, idx, :][None, :, :].sum(1) for idx in right_partition], dim=1
#             )
#         return ordered

# if __name__ == "__main__":
#     print(parts_mixgen(range(4)))
#     print([item for item in parts_mixgen_bisection(range(4), 2, 2)])

import warnings
from itertools import combinations
import torch
from torch import nn


class MixITLossWrapper(nn.Module):
    r"""Mixture invariant loss wrapper.
    Args:
        loss_func: function with signature (est_targets, targets, **kwargs).
        generalized (bool): Determines how MixIT is applied. If False ,
            apply MixIT for any number of mixtures as soon as they contain
            the same number of sources (:meth:`~MixITLossWrapper.best_part_mixit`.)
            If True (default), apply MixIT for two mixtures, but those mixtures do not
            necessarly have to contain the same number of sources.
            See :meth:`~MixITLossWrapper.best_part_mixit_generalized`.
    For each of these modes, the best partition and reordering will be
    automatically computed.
    Examples:
        >>> import torch
        >>> from asteroid.losses import multisrc_mse
        >>> mixtures = torch.randn(10, 2, 16000)
        >>> est_sources = torch.randn(10, 4, 16000)
        >>> # Compute MixIT loss based on pairwise losses
        >>> loss_func = MixITLossWrapper(multisrc_mse)
        >>> loss_val = loss_func(est_sources, mixtures)
    References
        [1] Scott Wisdom et al. "Unsupervised sound separation using
        mixtures of mixtures." arXiv:2006.12701 (2020)
    """

    def __init__(self, loss_func, generalized=True):
        super().__init__()
        self.loss_func = loss_func
        self.generalized = generalized

    def forward(self, est_targets, targets, return_est=False, **kwargs):
        r"""Find the best partition and return the loss.
        Args:
            est_targets: torch.Tensor. Expected shape :math:`(batch, nsrc, *)`.
                The batch of target estimates.
            targets: torch.Tensor. Expected shape :math:`(batch, nmix, ...)`.
                The batch of training targets
            return_est: Boolean. Whether to return the estimated mixtures
                estimates (To compute metrics or to save example).
            **kwargs: additional keyword argument that will be passed to the
                loss function.
        Returns:
            - Best partition loss for each batch sample, average over
              the batch. torch.Tensor(loss_value)
            - The estimated mixtures (estimated sources summed according to the partition)
              if return_est is True. torch.Tensor of shape :math:`(batch, nmix, ...)`.
        """
        # Check input dimensions
        assert est_targets.shape[0] == targets.shape[0]
        assert est_targets.shape[2] == targets.shape[2]

        if not self.generalized:
            min_loss, min_loss_idx, parts = self.best_part_mixit(
                self.loss_func, est_targets, targets, **kwargs
            )
        else:
            min_loss, min_loss_idx, parts = self.best_part_mixit_generalized(
                self.loss_func, est_targets, targets, **kwargs
            )
        # Take the mean over the batch
        mean_loss = torch.mean(min_loss)
        if not return_est:
            return mean_loss
        # Order and sum on the best partition to get the estimated mixtures
        reordered = self.reorder_source(est_targets, targets, min_loss_idx, parts)
        return mean_loss, reordered

    @staticmethod
    def best_part_mixit(loss_func, est_targets, targets, **kwargs):
        r"""Find best partition of the estimated sources that gives the minimum
        loss for the MixIT training paradigm in [1]. Valid for any number of
        mixtures as soon as they contain the same number of sources.
        Args:
            loss_func: function with signature ``(est_targets, targets, **kwargs)``
                The loss function to get batch losses from.
            est_targets: torch.Tensor. Expected shape :math:`(batch, nsrc, ...)`.
                The batch of target estimates.
            targets: torch.Tensor. Expected shape :math:`(batch, nmix, ...)`.
                The batch of training targets (mixtures).
            **kwargs: additional keyword argument that will be passed to the
                loss function.
        Returns:
            - :class:`torch.Tensor`:
              The loss corresponding to the best permutation of size (batch,).
            - :class:`torch.LongTensor`:
              The indices of the best partition.
            - :class:`list`:
              list of the possible partitions of the sources.
        """
        nmix = targets.shape[1]
        nsrc = est_targets.shape[1]
        if nsrc % nmix != 0:
            raise ValueError(
                "The mixtures are assumed to contain the same number of sources"
            )
        nsrcmix = nsrc // nmix

        # Generate all unique partitions of size k from a list lst of
        # length n, where l = n // k is the number of parts. The total
        # number of such partitions is: NPK(n,k) = n! / ((k!)^l * l!)
        # Algorithm recursively distributes items over parts
        def parts_mixit(lst, k, l):
            if l == 0:
                yield []
            else:
                for c in combinations(lst, k):
                    rest = [x for x in lst if x not in c]
                    for r in parts_mixit(rest, k, l - 1):
                        yield [list(c), *r]

        # Generate all the possible partitions
        parts = list(parts_mixit(range(nsrc), nsrcmix, nmix))
        # Compute the loss corresponding to each partition
        loss_set = MixITLossWrapper.loss_set_from_parts(
            loss_func, est_targets=est_targets, targets=targets, parts=parts, **kwargs
        )
        # Indexes and values of min losses for each batch element
        min_loss, min_loss_indexes = torch.min(loss_set, dim=1, keepdim=True)
        return min_loss, min_loss_indexes, parts

    @staticmethod
    def best_part_mixit_generalized(loss_func, est_targets, targets, **kwargs):
        r"""Find best partition of the estimated sources that gives the minimum
        loss for the MixIT training paradigm in [1]. Valid only for two mixtures,
        but those mixtures do not necessarly have to contain the same number of
        sources e.g the case where one mixture is silent is allowed..
        Args:
            loss_func: function with signature ``(est_targets, targets, **kwargs)``
                The loss function to get batch losses from.
            est_targets: torch.Tensor. Expected shape :math:`(batch, nsrc, ...)`.
                The batch of target estimates.
            targets: torch.Tensor. Expected shape :math:`(batch, nmix, ...)`.
                The batch of training targets (mixtures).
            **kwargs: additional keyword argument that will be passed to the
                loss function.
        Returns:
            - :class:`torch.Tensor`:
              The loss corresponding to the best permutation of size (batch,).
            - :class:`torch.LongTensor`:
              The indexes of the best permutations.
            - :class:`list`:
              list of the possible partitions of the sources.
        """
        nmix = targets.shape[1]  # number of mixtures
        nsrc = est_targets.shape[1]  # number of estimated sources
        if nmix != 2:
            raise ValueError("Works only with two mixtures")

        # Generate all unique partitions of any size from a list lst of
        # length n. Algorithm recursively distributes items over parts
        def parts_mixit_gen(lst):
            partitions = []
            for k in range(len(lst) + 1):
                for c in combinations(lst, k):
                    rest = []
                    if c != () and len(c) != len(lst):
                        for item in lst:
                            if item not in c:
                                rest.append(item)
                        partitions.append([c, rest])
            return partitions

        # Generate all the possible partitions
        parts = parts_mixit_gen(range(nsrc))
        # Compute the loss corresponding to each partition
        loss_set = MixITLossWrapper.loss_set_from_parts(
            loss_func, est_targets=est_targets, targets=targets, parts=parts, **kwargs
        )
        # Indexes and values of min losses for each batch element
        min_loss, min_loss_indexes = torch.min(loss_set, dim=1, keepdim=True)
        return min_loss, min_loss_indexes, parts

    @staticmethod
    def loss_set_from_parts(loss_func, est_targets, targets, parts, **kwargs):
        """Common loop between both best_part_mixit"""
        loss_set = []
        for partition in parts:
            # sum the sources according to the given partition
            est_mixes = torch.stack(
                [est_targets[:, idx, :].sum(1) for idx in partition], dim=1
            )
            # get loss for the given partition
            loss_set.append(loss_func(est_mixes, targets, **kwargs)[:, None])
        loss_set = torch.cat(loss_set, dim=1)
        return loss_set

    @staticmethod
    def reorder_source(est_targets, targets, min_loss_idx, parts):
        """Reorder sources according to the best partition.
        Args:
            est_targets: torch.Tensor. Expected shape :math:`(batch, nsrc, ...)`.
                The batch of target estimates.
            targets: torch.Tensor. Expected shape :math:`(batch, nmix, ...)`.
                The batch of training targets.
            min_loss_idx: torch.LongTensor. The indexes of the best permutations.
            parts: list of the possible partitions of the sources.
        Returns:
            :class:`torch.Tensor`: Reordered sources of shape :math:`(batch, nmix, time)`.
        """
        # For each batch there is a different min_loss_idx
        ordered = torch.zeros_like(targets)
        for b, idx in enumerate(min_loss_idx):
            right_partition = parts[idx]
            # Sum the estimated sources to get the estimated mixtures
            ordered[b, :, :] = torch.stack(
                [est_targets[b, idx, :][None, :, :].sum(1) for idx in right_partition],
                dim=1,
            )

        return ordered