fffiloni's picture
Migrated from GitHub
406f22d verified
import torch
from itertools import permutations
class SISNRi(object):
def __init__(self):
super(Loss, self).__init__()
def sisnr(self, mix, est, ref, eps = 1e-8):
"""
input:
mix: B x L
est: B x L
output: B
"""
est = est - torch.mean(est, dim = -1, keepdim = True)
ref = ref - torch.mean(ref, dim = -1, keepdim = True)
mix = mix - torch.mean(mix, dim = -1, keepdim = True)
est_p = (torch.sum(est * ref, dim = -1, keepdim = True) * ref) / torch.sum(ref * ref, dim = -1, keepdim = True)
est_v = est - est_p
mix_p = (torch.sum(mix * ref, dim = -1, keepdim = True) * ref) / torch.sum(ref * ref, dim = -1, keepdim = True)
mix_v = mix - mix_p
est_sisnr = 10 * torch.log10((torch.sum(est_p * est_p, dim = -1, keepdim = True) + eps) / (torch.sum(est_v * est_v, dim = -1, keepdim = True) + eps))
mix_sisnr = 10 * torch.log10((torch.sum(mix_p * mix_p, dim = -1, keepdim = True) + eps) / (torch.sum(mix_v * mix_v, dim = -1, keepdim = True) + eps))
return est_sisnr - mix_sisnr
def compute_loss(self, mix, ests, refs):
"""
input:
mix: B x L
est: num_spk x B x L
output: 1
"""
def sisnr_loss(permute):
# B
return torch.mean(torch.stack([self.sisnr(mix, ests[s], refs[t]) for s, t in enumerate(permute)]), dim = 0, keepdim = True)
num_spks = len(ests)
# pmt_num x B
sisnr_mat = torch.stack([sisnr_loss(p) for p in permutations(range(num_spks))])
# B
max_pmt, _ = torch.max(sisnr_mat, dim=0)
return -torch.mean(max_pmt)