Spaces:
Sleeping
Sleeping
import torch | |
from itertools import permutations | |
class SISNRi(object): | |
def __init__(self): | |
super(Loss, self).__init__() | |
def sisnr(self, mix, est, ref, eps = 1e-8): | |
""" | |
input: | |
mix: B x L | |
est: B x L | |
output: B | |
""" | |
est = est - torch.mean(est, dim = -1, keepdim = True) | |
ref = ref - torch.mean(ref, dim = -1, keepdim = True) | |
mix = mix - torch.mean(mix, dim = -1, keepdim = True) | |
est_p = (torch.sum(est * ref, dim = -1, keepdim = True) * ref) / torch.sum(ref * ref, dim = -1, keepdim = True) | |
est_v = est - est_p | |
mix_p = (torch.sum(mix * ref, dim = -1, keepdim = True) * ref) / torch.sum(ref * ref, dim = -1, keepdim = True) | |
mix_v = mix - mix_p | |
est_sisnr = 10 * torch.log10((torch.sum(est_p * est_p, dim = -1, keepdim = True) + eps) / (torch.sum(est_v * est_v, dim = -1, keepdim = True) + eps)) | |
mix_sisnr = 10 * torch.log10((torch.sum(mix_p * mix_p, dim = -1, keepdim = True) + eps) / (torch.sum(mix_v * mix_v, dim = -1, keepdim = True) + eps)) | |
return est_sisnr - mix_sisnr | |
def compute_loss(self, mix, ests, refs): | |
""" | |
input: | |
mix: B x L | |
est: num_spk x B x L | |
output: 1 | |
""" | |
def sisnr_loss(permute): | |
# B | |
return torch.mean(torch.stack([self.sisnr(mix, ests[s], refs[t]) for s, t in enumerate(permute)]), dim = 0, keepdim = True) | |
num_spks = len(ests) | |
# pmt_num x B | |
sisnr_mat = torch.stack([sisnr_loss(p) for p in permutations(range(num_spks))]) | |
# B | |
max_pmt, _ = torch.max(sisnr_mat, dim=0) | |
return -torch.mean(max_pmt) |