Spaces:
Sleeping
Sleeping
File size: 9,938 Bytes
1f9fa5b 18ac119 1f9fa5b 389ecbc 1f9fa5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import gradio as gr
import torch
import numpy as np
import tempfile
import os
from pathlib import Path
# Try to import wakanda_whisper, fallback to transformers if not available
try:
import wakanda_whisper
USE_WAKANDA_WHISPER = True
print("β
Using wakanda_whisper package")
except ImportError:
print("β οΈ wakanda_whisper not found, falling back to transformers...")
try:
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
USE_WAKANDA_WHISPER = False
print("β
Using transformers as fallback")
except ImportError:
print("β Neither wakanda_whisper nor transformers available")
USE_WAKANDA_WHISPER = None
# Initialize the model
def load_model():
"""Load the Wakanda Whisper model from Hugging Face."""
try:
if USE_WAKANDA_WHISPER:
# Use wakanda_whisper if available
print("π₯ Loading model with wakanda_whisper...")
model = wakanda_whisper.from_pretrained("WakandaAI/wakanda-whisper-small-rw-v1")
return model, None
elif USE_WAKANDA_WHISPER is False:
# Fallback to transformers
print("π₯ Loading model with transformers...")
processor = WhisperProcessor.from_pretrained("WakandaAI/wakanda-whisper-small-rw-v1")
model = WhisperForConditionalGeneration.from_pretrained("WakandaAI/wakanda-whisper-small-rw-v1")
return model, processor
else:
print("β No compatible libraries available")
return None, None
except Exception as e:
print(f"β Error loading model: {e}")
return None, None
# Global model variables
MODEL = None
PROCESSOR = None
def initialize_model():
"""Initialize model on first use"""
global MODEL, PROCESSOR
if MODEL is None:
print("π Initializing model...")
MODEL, PROCESSOR = load_model()
return MODEL, PROCESSOR
def transcribe_audio(audio_file):
"""
Transcribe audio using the Wakanda Whisper model.
"""
if audio_file is None:
return "Please upload an audio file."
try:
# Initialize model if needed
model, processor = initialize_model()
if model is None:
return "β Error: Could not load the model. Please try again later."
print(f"π΅ Processing audio file: {Path(audio_file).name}")
# Check if using mock model
if model == "mock_model":
filename = Path(audio_file).name
if "sample_1" in filename:
return "Muraho, witwa gute?"
elif "sample_2" in filename:
return "Ndashaka kwiga Ikinyarwanda."
elif "sample_3" in filename:
return "Urakoze cyane kubafasha."
elif "sample_4" in filename:
return "Tugiye gutangiza ikiganiro mu Kinyarwanda."
else:
return f"Mock transcription for {filename}: [This would be the actual Kinyarwanda transcription]"
# Real model processing
elif USE_WAKANDA_WHISPER:
# Use wakanda_whisper
result = model.transcribe(audio_file)
transcribed_text = result['text'].strip()
elif USE_WAKANDA_WHISPER is False:
# Use transformers
import librosa
audio, sr = librosa.load(audio_file, sr=16000)
input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features
with torch.no_grad():
predicted_ids = model.generate(input_features)
transcribed_text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0].strip()
else:
return "β Error: No compatible transcription library available."
if not transcribed_text:
return "π No speech detected in the audio file. Please try with a clearer audio recording."
print(f"β
Transcription completed: {len(transcribed_text)} characters")
return transcribed_text
except Exception as e:
print(f"β Transcription error: {e}")
return f"β Error during transcription: {str(e)}"
def transcribe_microphone(audio_data):
"""
Transcribe audio from microphone input.
Args:
audio_data: Audio data from microphone
Returns:
str: Transcribed text
"""
if audio_data is None:
return "Please record some audio first."
try:
# Save the audio data to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
# audio_data is a tuple (sample_rate, audio_array)
sample_rate, audio_array = audio_data
print(f"ποΈ Processing microphone input: {len(audio_array)} samples at {sample_rate}Hz")
# Convert to float32 and normalize if needed
if audio_array.dtype != np.float32:
audio_array = audio_array.astype(np.float32)
if audio_array.max() > 1.0:
# Normalize based on the original dtype
if audio_array.max() > 32767:
audio_array = audio_array / 32768.0
else:
audio_array = audio_array / audio_array.max()
# Save using soundfile
import soundfile as sf
sf.write(tmp_file.name, audio_array, sample_rate)
# Transcribe the temporary file
result = transcribe_audio(tmp_file.name)
# Clean up
os.unlink(tmp_file.name)
return result
except Exception as e:
print(f"β Microphone processing error: {e}")
return f"β Error processing microphone input: {str(e)}"
# Create a simple Gradio interface
def create_interface():
"""Create a clean, simple Gradio interface."""
with gr.Blocks(title="Wakanda Whisper - Kinyarwanda ASR") as interface:
gr.Markdown("# Wakanda ASR For Kinyarwanda")
gr.Markdown("### Kinyarwanda Automatic Speech Recognition")
gr.Markdown("Upload an audio file or record your voice to get Kinyarwanda transcription")
with gr.Tabs():
# File Upload Tab
with gr.TabItem("π Upload Audio File"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Choose Audio File",
type="filepath"
)
# Sample audio files
gr.Markdown("**Try these sample Kinyarwanda audio files:**")
with gr.Row():
sample_1 = gr.Button("Sample 1", size="sm")
sample_2 = gr.Button("Sample 2", size="sm")
sample_3 = gr.Button("Sample 3", size="sm")
sample_4 = gr.Button("Sample 4", size="sm")
upload_btn = gr.Button("π― Transcribe Audio", variant="primary")
with gr.Column():
upload_output = gr.Textbox(
label="Transcription Result",
placeholder="Your Kinyarwanda transcription will appear here...",
lines=6,
show_copy_button=True
)
# Microphone Tab
with gr.TabItem("ποΈ Record Audio"):
with gr.Row():
with gr.Column():
mic_input = gr.Audio(
label="Record Your Voice",
type="numpy"
)
mic_btn = gr.Button(" Transcribe Recording", variant="primary")
with gr.Column():
mic_output = gr.Textbox(
label="Transcription Result",
placeholder="Your Kinyarwanda transcription will appear here...",
lines=6,
show_copy_button=True
)
# Set up event handlers
upload_btn.click(
fn=transcribe_audio,
inputs=audio_input,
outputs=upload_output,
show_progress=True
)
# Sample audio button handlers
sample_1.click(
fn=lambda: "sample_1.wav",
outputs=audio_input
)
sample_2.click(
fn=lambda: "sample_2.wav",
outputs=audio_input
)
sample_3.click(
fn=lambda: "sample_3.wav",
outputs=audio_input
)
sample_4.click(
fn=lambda: "sample_4.wav",
outputs=audio_input
)
mic_btn.click(
fn=transcribe_microphone,
inputs=mic_input,
outputs=mic_output,
show_progress=True
)
gr.Markdown("---")
gr.Markdown("**Powered by WakandaAI** | Model: [wakanda-whisper-small-rw-v1](https://huggingface.co/WakandaAI/wakanda-whisper-small-rw-v1)")
return interface
# Launch the app
if __name__ == "__main__":
print("π Starting Wakanda Whisper ASR Demo...")
# Create and launch the interface
demo = create_interface()
# Launch configuration for Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
share=False, # Set to False for Hugging Face Spaces
show_error=True
)
|