File size: 13,344 Bytes
0b909d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55bc200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b909d1
55bc200
0b909d1
55bc200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b909d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55bc200
0b909d1
 
55bc200
0b909d1
 
 
55bc200
0b909d1
 
 
 
 
 
 
 
55bc200
0b909d1
 
 
 
 
 
 
 
 
 
 
 
55bc200
 
 
 
 
 
 
 
 
 
 
3547d18
55bc200
658070f
55bc200
1bbd1d4
7b7aba3
1bbd1d4
55bc200
 
658070f
55bc200
0b909d1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# app.py
import os
import oss2
import sys
import uuid
import shutil
import time
import gradio as gr
import requests

import dashscope
from dashscope.utils.oss_utils import check_and_upload_local

DASHSCOPE_API_KEY = os.getenv("DASHSCOPE_API_KEY")
dashscope.api_key = DASHSCOPE_API_KEY


class WanAnimateApp:
    def __init__(self, url, get_url):
        self.url = url
        self.get_url = get_url

    def predict(
        self, 
        ref_img,
        video,
        model_id,
        model,
    ):
        # Upload files to OSS if needed and get URLs
        _, image_url = check_and_upload_local(model_id, ref_img, DASHSCOPE_API_KEY)
        _, video_url = check_and_upload_local(model_id, video, DASHSCOPE_API_KEY)

        # Prepare the request payload
        payload = {
            "model": model_id,
            "input": {
                "image_url": image_url,
                "video_url": video_url
            },
            "parameters": {
                "check_image": True,
                "mode": model,
            }
        }
        
        # Set up headers
        headers = {
            "X-DashScope-Async": "enable",
            "X-DashScope-OssResourceResolve": "enable",
            "Authorization": f"Bearer {DASHSCOPE_API_KEY}",
            "Content-Type": "application/json"
        }
        
        # Make the initial API request
        url = self.url
        response = requests.post(url, json=payload, headers=headers)
        
        # Check if request was successful
        if response.status_code != 200:
            raise Exception(f"Initial request failed with status code {response.status_code}: {response.text}")
        
        # Get the task ID from response
        result = response.json()
        task_id = result.get("output", {}).get("task_id")
        if not task_id:
            raise Exception("Failed to get task ID from response")
        
        # Poll for results
        get_url = f"{self.get_url}/{task_id}"
        headers = {
            "Authorization": f"Bearer {DASHSCOPE_API_KEY}",
            "Content-Type": "application/json"
        }
        
        while True:
            response = requests.get(get_url, headers=headers)
            if response.status_code != 200:
                raise Exception(f"Failed to get task status: {response.status_code}: {response.text}")
            
            result = response.json()
            print(result)
            task_status = result.get("output", {}).get("task_status")
            
            if task_status == "SUCCEEDED":
                # Task completed successfully, return video URL
                video_url = result["output"]["results"]["video_url"]
                return video_url, "SUCCEEDED"
            elif task_status == "FAILED":
                # Task failed, raise an exception with error message
                error_msg = result.get("output", {}).get("message", "Unknown error")
                code_msg = result.get("output", {}).get("code", "Unknown code")
                print(f"\n\nTask failed: {error_msg} Code: {code_msg} TaskId: {task_id}\n\n")
                return None, f"Task failed: {error_msg} Code: {code_msg} TaskId: {task_id}"
                # raise Exception(f"Task failed: {error_msg} TaskId: {task_id}")
            else:
                # Task is still running, wait and retry
                time.sleep(5)  # Wait 5 seconds before polling again

def start_app():
    import argparse
    parser = argparse.ArgumentParser(description="Wan2.2-Animate 视频生成工具")
    args = parser.parse_args()
    
    url = "https://dashscope.aliyuncs.com/api/v1/services/aigc/image2video/video-synthesis/"
    # url = "https://poc-dashscope.aliyuncs.com/api/v1/services/aigc/image2video/video-synthesis"

    get_url = f"https://dashscope.aliyuncs.com/api/v1/tasks/"
    # get_url = f"https://poc-dashscope.aliyuncs.com/api/v1/tasks"
    app = WanAnimateApp(url=url, get_url=get_url)

    with gr.Blocks(title="Wan2.2-Animate 视频生成") as demo:
        gr.HTML("""

            
            <div style="padding: 2rem; text-align: center; max-width: 1200px; margin: 0 auto; font-family: Arial, sans-serif;">

                <h1 style="font-size: 2.5rem; font-weight: bold; margin-bottom: 0.5rem; color: #333;">
                    Wan2.2-Animate: Unified Character Animation and Replacement with Holistic Replication
                </h1>
                
                <h3 style="font-size: 2.5rem; font-weight: bold; margin-bottom: 0.5rem; color: #333;">
                    Wan2.2-Animate: 统一的角色动画和视频人物替换模型
                </h3>

                <div style="font-size: 1.25rem; margin-bottom: 1.5rem; color: #555;">
                    Tongyi Lab, Alibaba
                </div>

                <div style="display: flex; flex-wrap: wrap; justify-content: center; gap: 1rem; margin-bottom: 1rem;">
                    <!-- 第一行按钮 -->
                    <a href="https://arxiv.org/abs/2509.14055" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; /* 浅灰色背景 */ color: #333; /* 深色文字 */ text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">📄</span> <!-- 使用文档图标 -->
                        <span>Paper</span>
                    </a>

                    <a href="https://github.com/Wan-Video/Wan2.2" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">💻</span> <!-- 使用电脑图标 -->
                        <span>GitHub</span>
                    </a>

                    <a href="https://huggingface.co/Wan-AI/Wan2.2-Animate-14B" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">🤗</span>
                        <span>HF Model</span>
                    </a>

                    <a href="https://www.modelscope.cn/models/Wan-AI/Wan2.2-Animate-14B" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">🤖</span>
                        <span>MS Model</span>
                    </a>
                </div>

                <div style="display: flex; flex-wrap: wrap; justify-content: center; gap: 1rem;">
                    <!-- 第二行按钮 -->
                    <a href="https://huggingface.co/spaces/Wan-AI/Wan2.2-Animate" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">🤗</span>
                        <span>HF Space</span>
                    </a>

                    <a href="https://www.modelscope.cn/studios/Wan-AI/Wan2.2-Animate" target="_blank"
                    style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
                        <span style="margin-right: 0.5rem;">🤖</span>
                        <span>MS Studio</span>
                    </a>
                </div>

            </div>
            
            """)
        
        gr.HTML("""
                <details>
                    <summary>‼️Usage (使用说明)</summary>
                    
                    Wan-Animate supports two mode:
                    <ul>
                        <li>Move Mode: animate the  character in input image with movements from the input video</li>
                        <li>Mix Mode: replace the character in input video with the character in input image</li>
                    </ul>
                    
                    Wan-Animate 支持两种模式:
                    <ul>
                        <li>Move模式: 用输入视频中提取的动作,驱动输入图片中的角色</li>
                        <li>Mix模式: 用输入图片中的角色,替换输入视频中的角色</li>
                    </ul>

                    Currently, the following restrictions apply to inputs:

                    <ul> <li>Video file size: Less than 200MB</li> 
                    <li>Video resolution: The shorter side must be greater than 200, and the longer side must be less than 2048</li> 
                    <li>Video duration: 2s to 30s</li> 
                    <li>Video aspect ratio: 1:3 to 3:1</li> 
                    <li>Video formats: mp4, avi, mov</li> 
                    <li>Image file size: Less than 5MB</li> 
                    <li>Image resolution: The shorter side must be greater than 200, and the longer side must be less than 4096</li> 
                    <li>Image formats: jpg, png, jpeg, webp, bmp</li> </ul>

                    
                    当前,对于输入有以下的限制 

                    <ul>
                        <li>视频文件大小: 小于 200MB</li>
                        <li>视频分辨率: 最小边大于 200, 最大边小于2048</li>
                        <li>视频时长: 2s ~ 30s </li> 
                        <li>视频比例:1:3 ~ 3:1 </li>
                        <li>视频格式: mp4, avi, mov </li> 
                        <li>图片文件大小: 小于5MB </li>
                        <li>图片分辨率:最小边大于200,最大边小于4096 </li>
                        <li>图片格式: jpg, png, jpeg, webp, bmp </li> 
                    </ul>     
                    
                    <p> Currently, the inference quality has two variants. You can use our open-source code for more flexible configuration. </p>
                    
                    <p>当前,推理质量有两个变种。 您可以使用我们的开源代码,来进行更灵活的设置。</p>
                    
                    <ul>
                        <li> wan-pro: 25fps, 720p </li> 
                        <li> wan-std: 15fps, 720p  </li>
                    </ul>     
                              

                </details>                
                """)

        with gr.Row():
            with gr.Column():    
                ref_img = gr.Image(
                    label="Reference Image(参考图像)",
                    type="filepath",
                    sources=["upload"],
                )
                
                video = gr.Video(
                    label="Template Video(模版视频)",
                    sources=["upload"],
                )
                
                with gr.Row():
                    model_id = gr.Dropdown(
                        label="Mode(模式)",
                        choices=["wan2.2-animate-move", "wan2.2-animate-mix"],
                        value="wan2.2-animate-move",
                        info=""
                    )

                    model = gr.Dropdown(
                        label="推理质量(Inference Quality)",
                        choices=["wan-pro", "wan-std"],
                        value="wan-pro",
                    )

                run_button = gr.Button("Generate Video(生成视频)")

            with gr.Column():
                output_video = gr.Video(label="Output Video(输出视频)")
                output_status = gr.Textbox(label="Status(状态)")
        
        run_button.click(
            fn=app.predict,
            inputs=[
                ref_img,
                video,
                model_id,
                model,
            ],
            outputs=[output_video, output_status],
        )

        example_data = [
            ['./examples/mov/1/1.jpeg', './examples/mov/1/1.mp4', 'wan2.2-animate-move', 'wan-pro'],
            ['./examples/mov/2/2.jpeg', './examples/mov/2/2.mp4', 'wan2.2-animate-move', 'wan-pro'],
            ['./examples/mix/1/1.jpeg', './examples/mix/1/1.mp4', 'wan2.2-animate-mix', 'wan-pro'],
            ['./examples/mix/2/2.jpeg', './examples/mix/2/2.mp4', 'wan2.2-animate-mix', 'wan-pro']
        ]

        if example_data:
            gr.Examples(
                examples=example_data,
                inputs=[ref_img, video, model_id, model],
                outputs=[output_video, output_status],
                fn=app.predict,
                cache_examples="lazy",
            )
    
    demo.queue(default_concurrency_limit=100)
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860
    )


if __name__ == "__main__":
    start_app()