CaroTTS-DE / german_text_preprocessor.py
Warholt's picture
add text preprocessing and onnx cpu inference alternative
5ecf3a1
"""
German Text Preprocessing Module for TTS
Handles normalization of numbers, dates, decimal numbers, and other text elements
to their spoken form in German.
"""
import re
class GermanTextPreprocessor:
"""
Preprocesses German text for TTS by converting numbers, dates, and special
characters into their spoken equivalents.
"""
# Number words for German
ONES = {
0: "", 1: "eins", 2: "zwei", 3: "drei", 4: "vier",
5: "fünf", 6: "sechs", 7: "sieben", 8: "acht", 9: "neun"
}
# Digit names for reading individual digits (including zero)
DIGITS = {
0: "null", 1: "eins", 2: "zwei", 3: "drei", 4: "vier",
5: "fünf", 6: "sechs", 7: "sieben", 8: "acht", 9: "neun"
}
TEENS = {
10: "zehn", 11: "elf", 12: "zwölf", 13: "dreizehn",
14: "vierzehn", 15: "fünfzehn", 16: "sechzehn",
17: "siebzehn", 18: "achtzehn", 19: "neunzehn"
}
TENS = {
2: "zwanzig", 3: "dreißig", 4: "vierzig",
5: "fünfzig", 6: "sechzig", 7: "siebzig",
8: "achtzig", 9: "neunzig"
}
SCALES = [
(1000000000, "Milliarde", "Milliarden"),
(1000000, "Million", "Millionen"),
(1000, "tausend", "tausend")
]
# Ordinal number endings
ORDINAL_ONES = {
1: "erster", 2: "zweiter", 3: "dritter", 4: "vierter",
5: "fünfter", 6: "sechster", 7: "siebter", 8: "achter", 9: "neunter"
}
ORDINAL_TEENS = {
10: "zehnter", 11: "elfter", 12: "zwölfter", 13: "dreizehnter",
14: "vierzehnter", 15: "fünfzehnter", 16: "sechzehnter",
17: "siebzehnter", 18: "achtzehnter", 19: "neunzehnter"
}
# Month names
MONTHS = {
1: "Januar", 2: "Februar", 3: "März", 4: "April",
5: "Mai", 6: "Juni", 7: "Juli", 8: "August",
9: "September", 10: "Oktober", 11: "November", 12: "Dezember"
}
MONTH_ABBREV = {
"jan": "Januar", "feb": "Februar", "mär": "März", "apr": "April",
"mai": "Mai", "jun": "Juni", "jul": "Juli", "aug": "August",
"sep": "September", "sept": "September", "okt": "Oktober",
"nov": "November", "dez": "Dezember"
}
def __init__(self):
"""Initialize the German text preprocessor."""
pass
def _number_to_words(self, num: int) -> str:
"""
Convert a cardinal number to its German word form.
Args:
num: Integer to convert
Returns:
German word representation of the number
"""
if num == 0:
return "null"
if num < 0:
return "minus " + self._number_to_words(-num)
# Handle 1-9
if num < 10:
return self.ONES[num]
# Handle 10-19
if num < 20:
return self.TEENS[num]
# Handle 20-99
if num < 100:
ones = num % 10
tens = num // 10
if ones == 0:
return self.TENS[tens]
else:
ones_word = self.ONES[ones]
# Special case: "eins" becomes "ein" in compound numbers
if ones == 1:
ones_word = "ein"
return f"{ones_word}und{self.TENS[tens]}"
# Handle 100-999
if num < 1000:
hundreds = num // 100
remainder = num % 100
hundreds_word = "einhundert" if hundreds == 1 else f"{self.ONES[hundreds]}hundert"
if remainder == 0:
return hundreds_word
return f"{hundreds_word}{self._number_to_words(remainder)}"
# Handle larger numbers using scales
for scale, singular, plural in self.SCALES:
if num >= scale:
quotient = num // scale
remainder = num % scale
# Format the quotient part
quotient_words = self._number_to_words(quotient)
# Choose singular or plural
if scale == 1000:
scale_word = singular
# Special formatting for thousands
if quotient == 1:
scale_word = "eintausend"
else:
scale_word = f"{quotient_words}tausend"
if remainder == 0:
return scale_word
return f"{scale_word}{self._number_to_words(remainder)}"
else:
scale_word = singular if quotient == 1 else plural
if quotient == 1:
result = f"eine {scale_word}"
else:
result = f"{quotient_words} {scale_word}"
if remainder == 0:
return result
return f"{result} {self._number_to_words(remainder)}"
return str(num)
def _year_to_words(self, year: int) -> str:
"""
Convert a year to its German spoken form.
Args:
year: Year as integer (e.g., 1994, 2019)
Returns:
German spoken form of the year
"""
# For years 1000-1999, split into hundreds
if 1000 <= year <= 1999:
hundreds = year // 100
remainder = year % 100
if remainder == 0:
return self._number_to_words(year)
# Create compound like "neunzehnhundertvierundneunzig"
hundreds_word = self._number_to_words(hundreds)
return f"{hundreds_word}hundert{self._number_to_words(remainder)}"
# For years 2000+, use normal number reading
return self._number_to_words(year)
def _ordinal_to_words(self, num: int) -> str:
"""
Convert a number to its German ordinal form.
Args:
num: Integer to convert to ordinal
Returns:
German ordinal word
"""
if num < 1:
return self._number_to_words(num) + "ter"
# Handle 1-9
if num < 10:
return self.ORDINAL_ONES.get(num, self._number_to_words(num) + "ter")
# Handle 10-19
if num < 20:
return self.ORDINAL_TEENS.get(num, self._number_to_words(num) + "ter")
# For larger numbers, add "ter" to the cardinal
return self._number_to_words(num) + "ter"
def _process_decimal(self, match: re.Match) -> str:
"""
Process decimal numbers like "3,1415" -> "drei komma eins vier eins fünf"
Args:
match: Regex match object containing the decimal number
Returns:
Spoken form of the decimal number
"""
full_number = match.group(0)
parts = full_number.split(',')
# Integer part
integer_part = int(parts[0]) if parts[0] else 0
result = self._number_to_words(integer_part)
# Decimal part - read digit by digit (including zeros)
if len(parts) > 1 and parts[1]:
result += " komma"
for digit in parts[1]:
result += " " + self.DIGITS[int(digit)]
return result
def _process_date(self, match: re.Match) -> str:
"""
Process dates in various formats:
- "20.11.2019" -> "zwanzigster elfter zweitausendneunzehn"
- "1. Jan. 1994" -> "erster Januar neunzehnhundertvierundneunzig"
Args:
match: Regex match object containing the date
Returns:
Spoken form of the date
"""
date_str = match.group(0)
# Pattern 1: DD.MM.YYYY or D.M.YYYY
pattern1 = r'(\d{1,2})\.(\d{1,2})\.(\d{4})'
m1 = re.match(pattern1, date_str)
if m1:
day = int(m1.group(1))
month = int(m1.group(2))
year = int(m1.group(3))
day_word = self._ordinal_to_words(day)
month_word = self._ordinal_to_words(month)
year_word = self._year_to_words(year)
return f"{day_word} {month_word} {year_word}"
# Pattern 2: D. Mon. YYYY or DD. Month YYYY
pattern2 = r'(\d{1,2})\.\s*([A-Za-zä]+)\.?\s*(\d{4})'
m2 = re.match(pattern2, date_str)
if m2:
day = int(m2.group(1))
month_str = m2.group(2).lower()
year = int(m2.group(3))
day_word = self._ordinal_to_words(day)
# Try to find month
month_word = self.MONTH_ABBREV.get(month_str, month_str)
year_word = self._year_to_words(year)
return f"{day_word} {month_word} {year_word}"
# Pattern 3: Just DD.MM or D.M (without year)
pattern3 = r'(\d{1,2})\.(\d{1,2})\.'
m3 = re.match(pattern3, date_str)
if m3:
day = int(m3.group(1))
month = int(m3.group(2))
day_word = self._ordinal_to_words(day)
month_word = self._ordinal_to_words(month)
return f"{day_word} {month_word}"
return date_str
def _process_standalone_number(self, match: re.Match) -> str:
"""
Process standalone cardinal numbers.
Args:
match: Regex match object containing the number
Returns:
Spoken form of the number
"""
num_str = match.group(0)
num = int(num_str)
return self._number_to_words(num)
def preprocess(self, text: str) -> str:
"""
Main preprocessing function that applies all transformations.
Args:
text: Input German text
Returns:
Preprocessed text with numbers, dates, etc. converted to spoken form
"""
# Order matters! More specific patterns first
# 1. Process dates (must come before decimal and integer processing)
# Pattern: DD.MM.YYYY or D.M.YYYY
text = re.sub(
r'\b(\d{1,2})\.(\d{1,2})\.(\d{4})\b',
self._process_date,
text
)
# Pattern: D. Month YYYY or DD. Mon. YYYY
text = re.sub(
r'\b(\d{1,2})\.\s*([A-Za-zäöüÄÖÜ]+)\.?\s*(\d{4})\b',
self._process_date,
text
)
# Pattern: DD.MM. or D.M.
text = re.sub(
r'\b(\d{1,2})\.(\d{1,2})\.',
self._process_date,
text
)
# 2. Process decimal numbers (before integers)
# Pattern: number,digits (e.g., 3,1415 or 0,5)
text = re.sub(
r'\b\d+,\d+\b',
self._process_decimal,
text
)
# 3. Process standalone integers (cardinal numbers)
# This will catch remaining numbers not processed by date/decimal patterns
text = re.sub(
r'\b\d+\b',
self._process_standalone_number,
text
)
# 4. Clean up any extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
# Convenience function for easy import and use
def preprocess_german_text(text: str) -> str:
"""
Convenience function to preprocess German text.
Args:
text: Input German text
Returns:
Preprocessed text with numbers, dates, etc. in spoken form
"""
preprocessor = GermanTextPreprocessor()
return preprocessor.preprocess(text)
# Example usage and testing
if __name__ == "__main__":
preprocessor = GermanTextPreprocessor()
test_cases = [
"Die Zahl ist 3",
"Heute ist der 20.11.2019",
"Geboren am 1. Jan. 1994",
"Pi ist ungefähr 3,1415",
"Es sind 42 Studenten in der Klasse",
"Das Jahr 2023 war interessant",
"Der Preis beträgt 19,99 Euro",
"Am 5.12. ist Nikolaus",
"Die Temperatur ist -5 Grad",
"Es gibt 1000000 Möglichkeiten",
"Im Jahr 1789 begann die Revolution",
]
print("German Text Preprocessing Examples:")
print("=" * 80)
for text in test_cases:
processed = preprocessor.preprocess(text)
print(f"Input: {text}")
print(f"Output: {processed}")
print("-" * 80)