File size: 19,858 Bytes
c63c0e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
"""
OCR Arena - Main Application
A Gradio web application for comparing OCR results from different AI models.
"""
import gradio as gr
import logging
import os
import datetime
from dotenv import load_dotenv
from storage import upload_file_to_bucket
from db import add_vote, get_all_votes, calculate_elo_ratings_from_votes
from ocr_models import process_model_ocr, initialize_gemini, initialize_mistral, initialize_openai
from ui_helpers import (
get_model_display_name, select_random_models, format_votes_table,
format_elo_leaderboard
)
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
logger = logging.getLogger(__name__)
# Initialize API keys and models
initialize_gemini()
initialize_mistral()
initialize_openai()
# Get Supabase credentials
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
# Global variables to store current OCR results and image URL
current_gemini_output = ""
current_mistral_output = ""
current_openai_output = ""
current_gpt5_output = ""
current_gpt5_output = ""
current_image_url = ""
current_voted_users = set() # Track users who have already voted
current_model_a = "" # Store which model was selected as model A
current_model_b = "" # Store which model was selected as model B
def get_default_username(profile: gr.OAuthProfile | None) -> str:
"""Returns the username if the user is logged in, or an empty string if not logged in."""
if profile is None:
return ""
return profile.username
def get_current_username(profile_or_username) -> str:
"""Returns the username from login or "Anonymous" if not logged in."""
# Check if profile_or_username is a profile object with username attribute
if hasattr(profile_or_username, 'username') and profile_or_username.username:
return profile_or_username.username
# Check if profile_or_username is a direct username string
elif isinstance(profile_or_username, str) and profile_or_username.strip():
# Extract username from "Logout (username)" format
if profile_or_username.startswith("Logout (") and profile_or_username.endswith(")"):
return profile_or_username[8:-1] # Remove "Logout (" and ")"
# If it's just a username string, return it
elif profile_or_username != "Sign in with Hugging Face":
return profile_or_username.strip()
# Return "Anonymous" if no valid username found
return "Anonymous"
def process_image(image):
"""Process uploaded image and select random models for comparison."""
global current_gemini_output, current_mistral_output, current_openai_output, current_image_url, current_voted_users, current_model_a, current_model_b
if image is None:
return (
"Please upload an image.",
"Please upload an image.",
gr.update(visible=False), # Hide vote buttons
gr.update(visible=False) # Hide vote buttons
)
# Reset voted users for new image
current_voted_users.clear()
# Select two random models
model_a, model_b = select_random_models()
current_model_a = model_a
current_model_b = model_b
logger.info(f"🎲 Randomly selected two models for comparison")
try:
# Save the PIL image to a temporary file
temp_filename = f"temp_image_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
image.save(temp_filename)
# Upload the temporary file to Supabase storage
logger.info(f"📤 Uploading image to Supabase storage: {temp_filename}")
upload_result = upload_file_to_bucket(
file_path=temp_filename,
bucket_name="images",
storage_path=f"ocr_images/{temp_filename}",
file_options={"cache-control": "3600", "upsert": "false"}
)
if upload_result["success"]:
logger.info(f"✅ Image uploaded successfully: {upload_result['storage_path']}")
logger.info(f"🔗 Public URL: {upload_result['public_url']}")
# Store the image URL for voting
current_image_url = upload_result.get('public_url') or f"{SUPABASE_URL}/storage/v1/object/public/images/ocr_images/{temp_filename}"
else:
logger.error(f"❌ Image upload failed: {upload_result['error']}")
current_image_url = ""
# Clean up temporary file
try:
os.remove(temp_filename)
logger.info(f"🗑️ Cleaned up temporary file: {temp_filename}")
except Exception as e:
logger.warning(f"⚠️ Could not remove temporary file {temp_filename}: {e}")
# Return initial state - OCR processing will happen via separate button clicks
return (
"Please click 'Run OCR' to start processing.",
"Please click 'Run OCR' to start processing.",
gr.update(visible=False), # Hide vote buttons initially
gr.update(visible=False) # Hide vote buttons initially
)
except Exception as e:
logger.error(f"Error processing image: {e}")
return (
f"Error processing image: {e}",
f"Error processing image: {e}",
gr.update(visible=False), # Hide vote buttons
gr.update(visible=False) # Hide vote buttons
)
def check_ocr_completion(model_a_output, model_b_output):
"""Check if both OCR results are ready and update UI accordingly."""
global current_gemini_output, current_mistral_output, current_openai_output, current_gpt5_output, current_model_a, current_model_b
# Check if both results are complete (not processing messages)
model_a_ready = (model_a_output and
model_a_output != "Please upload an image." and
model_a_output != "Processing OCR..." and
model_a_output != "Please click 'Run OCR' to start processing." and
not model_a_output.startswith("OCR error:"))
model_b_ready = (model_b_output and
model_b_output != "Please upload an image." and
model_b_output != "Processing OCR..." and
model_b_output != "Please click 'Run OCR' to start processing." and
not model_b_output.startswith("OCR error:"))
# Update global variables with actual results based on which models were selected
if model_a_ready:
if current_model_a == "gemini":
current_gemini_output = model_a_output
elif current_model_a == "mistral":
current_mistral_output = model_a_output
elif current_model_a == "openai":
current_openai_output = model_a_output
elif current_model_a == "gpt5":
current_gpt5_output = model_a_output
if model_b_ready:
if current_model_b == "gemini":
current_gemini_output = model_b_output
elif current_model_b == "mistral":
current_mistral_output = model_b_output
elif current_model_b == "openai":
current_openai_output = model_b_output
elif current_model_b == "gpt5":
current_gpt5_output = model_b_output
# Show vote buttons only when both are ready
if model_a_ready and model_b_ready:
return (
gr.update(visible=True), # Show Model A vote button
gr.update(visible=True) # Show Model B vote button
)
else:
return (
gr.update(visible=False), # Hide vote buttons
gr.update(visible=False) # Hide vote buttons
)
def load_vote_data():
"""Load and format vote data for display."""
try:
# Get all votes
votes = get_all_votes()
votes_table_html = format_votes_table(votes)
return votes_table_html
except Exception as e:
logger.error(f"Error loading vote data: {e}")
error_html = f"<p style='color: red;'>Error loading data: {e}</p>"
return error_html
def load_elo_leaderboard():
"""Load and format ELO leaderboard data."""
try:
# Get all votes
votes = get_all_votes()
# Calculate ELO ratings
elo_ratings = calculate_elo_ratings_from_votes(votes)
# Calculate vote counts for each model
vote_counts = {
"gemini": 0,
"mistral": 0,
"openai": 0,
"gpt5": 0
}
for vote in votes:
model_a = vote.get('model_a')
model_b = vote.get('model_b')
vote_choice = vote.get('vote')
if vote_choice == 'model_a' and model_a in vote_counts:
vote_counts[model_a] += 1
elif vote_choice == 'model_b' and model_b in vote_counts:
vote_counts[model_b] += 1
# Format leaderboard with vote counts
leaderboard_html = format_elo_leaderboard(elo_ratings, vote_counts)
return leaderboard_html
except Exception as e:
logger.error(f"Error loading ELO leaderboard: {e}")
error_html = f"<p style='color: red;'>Error loading ELO leaderboard: {e}</p>"
return error_html
# Create the Gradio interface
with gr.Blocks(title="OCR Comparison", css="""
.output-box {
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
background-color: #f9f9f9;
min-height: 200px;
}
.output-box:hover {
border-color: #007bff;
box-shadow: 0 2px 8px rgba(0,123,255,0.1);
}
.vote-table {
border-collapse: collapse;
width: 100%;
margin: 10px 0;
min-width: 800px;
}
.vote-table th, .vote-table td {
border: 1px solid #ddd;
padding: 6px;
text-align: left;
vertical-align: top;
}
.vote-table th {
background-color: #f2f2f2;
font-weight: bold;
position: sticky;
top: 0;
z-index: 10;
}
.vote-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.vote-table tr:hover {
background-color: #f5f5f5;
}
.vote-table img {
transition: transform 0.2s ease;
max-width: 100%;
height: auto;
}
.vote-table img:hover {
transform: scale(1.1);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
""") as demo:
with gr.Tabs():
# Arena Tab (default)
with gr.Tab("⚔️ Arena", id=0):
gr.Markdown("# ⚔️ OCR Arena: Random Model Selection")
gr.Markdown("Upload an image to compare two randomly selected OCR models.")
# Authentication section (optional)
with gr.Row():
with gr.Column(scale=3):
username_display = gr.Textbox(
label="Current User",
placeholder="Login with Hugging Face to vote (optional) - Anonymous users welcome!",
interactive=False,
show_label=False
)
with gr.Column(scale=1):
login_button = gr.LoginButton()
with gr.Row():
with gr.Column():
gemini_vote_btn = gr.Button("A is better", variant="primary", size="sm", visible=False)
gemini_output = gr.Markdown(label="Model A Output", elem_classes=["output-box"])
image_input = gr.Image(type="pil", label="Upload or Paste Image")
with gr.Column():
mistral_vote_btn = gr.Button("B is better", variant="primary", size="sm", visible=False)
mistral_output = gr.Markdown(label="Model B Output", elem_classes=["output-box"])
with gr.Row():
process_btn = gr.Button("🔍 Run OCR", variant="primary")
# Data Tab
with gr.Tab("📊 Data", id=1):
gr.Markdown("# 📊 Vote Data")
gr.Markdown("View all votes from the OCR Arena")
with gr.Row():
refresh_btn = gr.Button("🔄 Refresh Data", variant="secondary")
with gr.Row():
votes_table = gr.HTML(
value="<p>Loading vote data...</p>",
label="📋 All Votes (Latest First)"
)
# Leaderboard Tab
with gr.Tab("🏆 Leaderboard", id=2):
gr.Markdown("# 🏆 ELO Leaderboard")
gr.Markdown("See how the models rank based on their ELO ratings from head-to-head comparisons.")
with gr.Row():
refresh_leaderboard_btn = gr.Button("🔄 Refresh Leaderboard", variant="secondary")
with gr.Row():
leaderboard_display = gr.HTML(
value="<p>Loading ELO leaderboard...</p>",
label="🏆 Model Rankings"
)
# Vote functions
def vote_model_a(profile_or_username):
global current_gemini_output, current_mistral_output, current_openai_output, current_gpt5_output, current_image_url, current_voted_users, current_model_a, current_model_b
# Get current username
username = get_current_username(profile_or_username)
if not username:
username = "Anonymous"
# Check if user has already voted
if username in current_voted_users:
gr.Info(f"You have already voted for this image, {username}!")
return
try:
# Use the stored image URL from the upload
image_url = current_image_url if current_image_url else "no_image"
# Add vote to database
logger.info(f"📊 Adding Model A vote for user: {username}")
def output_for(model: str) -> str:
return {
"gemini": current_gemini_output,
"mistral": current_mistral_output,
"openai": current_openai_output,
"gpt5": current_gpt5_output,
}.get(model, "")
add_vote(
username=username,
model_a=current_model_a,
model_b=current_model_b,
model_a_output=output_for(current_model_a),
model_b_output=output_for(current_model_b),
vote="model_a",
image_url=image_url
)
# Mark user as voted
current_voted_users.add(username)
model_a_name = get_model_display_name(current_model_a)
model_b_name = get_model_display_name(current_model_b)
info_message = (
f"<p>You voted for <strong style='color:green;'>{model_a_name}</strong>.</p>"
f"<p><span style='color:green;'>{model_a_name}</span> - "
f"<span style='color:blue;'>{model_b_name}</span></p>"
)
gr.Info(info_message)
except Exception as e:
logger.error(f"❌ Error adding Model A vote: {e}")
gr.Info(f"Error recording vote: {e}")
def vote_model_b(profile_or_username):
global current_gemini_output, current_mistral_output, current_openai_output, current_gpt5_output, current_image_url, current_voted_users, current_model_a, current_model_b
# Get current username
username = get_current_username(profile_or_username)
if not username:
username = "Anonymous"
# Check if user has already voted
if username in current_voted_users:
gr.Info(f"You have already voted for this image, {username}!")
return
try:
# Use the stored image URL from the upload
image_url = current_image_url if current_image_url else "no_image"
# Add vote to database
logger.info(f"📊 Adding Model B vote for user: {username}")
def output_for(model: str) -> str:
return {
"gemini": current_gemini_output,
"mistral": current_mistral_output,
"openai": current_openai_output,
"gpt5": current_gpt5_output,
}.get(model, "")
add_vote(
username=username,
model_a=current_model_a,
model_b=current_model_b,
model_a_output=output_for(current_model_a),
model_b_output=output_for(current_model_b),
vote="model_b",
image_url=image_url
)
# Mark user as voted
current_voted_users.add(username)
model_a_name = get_model_display_name(current_model_a)
model_b_name = get_model_display_name(current_model_b)
info_message = (
f"<p>You voted for <strong style='color:blue;'>{model_b_name}</strong>.</p>"
f"<p><span style='color:green;'>{model_a_name}</span> - "
f"<span style='color:blue;'>{model_b_name}</span></p>"
)
gr.Info(info_message)
except Exception as e:
logger.error(f"❌ Error adding Model B vote: {e}")
gr.Info(f"Error recording vote: {e}")
# Event handlers
process_btn.click(
process_image,
inputs=[image_input],
outputs=[gemini_output, mistral_output, gemini_vote_btn, mistral_vote_btn],
)
# Process both randomly selected OCRs when the process button is clicked
def process_model_a_ocr(image):
global current_model_a
return process_model_ocr(image, current_model_a)
def process_model_b_ocr(image):
global current_model_b
return process_model_ocr(image, current_model_b)
process_btn.click(
process_model_a_ocr,
inputs=[image_input],
outputs=[gemini_output],
)
process_btn.click(
process_model_b_ocr,
inputs=[image_input],
outputs=[mistral_output],
)
# Check completion status when either OCR output changes
gemini_output.change(
check_ocr_completion,
inputs=[gemini_output, mistral_output],
outputs=[gemini_vote_btn, mistral_vote_btn],
)
mistral_output.change(
check_ocr_completion,
inputs=[gemini_output, mistral_output],
outputs=[gemini_vote_btn, mistral_vote_btn],
)
gemini_vote_btn.click(
vote_model_a,
inputs=[login_button]
)
mistral_vote_btn.click(
vote_model_b,
inputs=[login_button]
)
# Refresh data button
refresh_btn.click(
load_vote_data,
inputs=None,
outputs=[votes_table]
)
# Refresh leaderboard button
refresh_leaderboard_btn.click(
load_elo_leaderboard,
inputs=None,
outputs=[leaderboard_display]
)
# Update username display when user logs in
demo.load(fn=get_default_username, inputs=None, outputs=username_display)
# Load vote data when app starts
demo.load(fn=load_vote_data, inputs=None, outputs=[votes_table])
# Load leaderboard when app starts
demo.load(fn=load_elo_leaderboard, inputs=None, outputs=[leaderboard_display])
if __name__ == "__main__":
logger.info("Starting OCR Comparison App...")
try:
# Try to launch on localhost first
demo.launch(share=True)
except ValueError as e:
logger.warning(f"Localhost not accessible: {e}")
logger.info("Launching with public URL...")
demo.launch(share=True) |