Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -76,102 +76,102 @@ os.makedirs("data", exist_ok=True)
|
|
76 |
app.config['MODEL_FOLDER'] = MODEL_FOLDER
|
77 |
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
78 |
|
79 |
-
# ------------------------------
|
80 |
-
# Load Models and Label Encoders
|
81 |
-
# ------------------------------
|
82 |
-
|
83 |
# Prediction analysis models loaded from Hugging Face.
|
84 |
|
85 |
|
86 |
#classsification model on the task
|
|
|
|
|
|
|
|
|
87 |
src_path = hf_hub_download(
|
88 |
repo_id="WebashalarForML/Diamond_model_",
|
89 |
-
filename="CLASS_DUMMY/
|
90 |
cache_dir=MODEL_FOLDER
|
91 |
)
|
92 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
93 |
shutil.copy(src_path, dst_path)
|
94 |
-
|
95 |
-
|
96 |
|
|
|
97 |
src_path = hf_hub_download(
|
98 |
repo_id="WebashalarForML/Diamond_model_",
|
99 |
-
filename="CLASS_DUMMY/
|
100 |
cache_dir=MODEL_FOLDER
|
101 |
)
|
102 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
103 |
shutil.copy(src_path, dst_path)
|
104 |
-
|
105 |
-
|
106 |
-
#
|
107 |
src_path = hf_hub_download(
|
108 |
repo_id="WebashalarForML/Diamond_model_",
|
109 |
-
filename="CLASS_DUMMY/
|
110 |
cache_dir=MODEL_FOLDER
|
111 |
)
|
112 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
113 |
shutil.copy(src_path, dst_path)
|
114 |
-
|
115 |
-
|
116 |
|
|
|
117 |
src_path = hf_hub_download(
|
118 |
repo_id="WebashalarForML/Diamond_model_",
|
119 |
-
filename="CLASS_DUMMY/
|
120 |
cache_dir=MODEL_FOLDER
|
121 |
)
|
122 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
123 |
shutil.copy(src_path, dst_path)
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
|
|
126 |
src_path = hf_hub_download(
|
127 |
repo_id="WebashalarForML/Diamond_model_",
|
128 |
-
filename="CLASS_DUMMY/
|
129 |
cache_dir=MODEL_FOLDER
|
130 |
)
|
131 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
132 |
shutil.copy(src_path, dst_path)
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
src_path = hf_hub_download(
|
137 |
repo_id="WebashalarForML/Diamond_model_",
|
138 |
-
filename="CLASS_DUMMY/
|
139 |
cache_dir=MODEL_FOLDER
|
140 |
)
|
141 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
142 |
shutil.copy(src_path, dst_path)
|
143 |
col_change = load(dst_path)
|
144 |
|
|
|
145 |
src_path = hf_hub_download(
|
146 |
repo_id="WebashalarForML/Diamond_model_",
|
147 |
-
filename="CLASS_DUMMY/
|
148 |
cache_dir=MODEL_FOLDER
|
149 |
)
|
150 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
151 |
shutil.copy(src_path, dst_path)
|
152 |
qua_change = load(dst_path)
|
153 |
|
|
|
154 |
src_path = hf_hub_download(
|
155 |
repo_id="WebashalarForML/Diamond_model_",
|
156 |
-
filename="CLASS_DUMMY/
|
157 |
cache_dir=MODEL_FOLDER
|
158 |
)
|
159 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
160 |
shutil.copy(src_path, dst_path)
|
161 |
cut_change = load(dst_path)
|
162 |
|
163 |
-
'''
|
164 |
-
|
165 |
-
#print("makable_model type:", type(makable_model))
|
166 |
-
#print("grade_model type:", type(grade_model))
|
167 |
-
#print("bygrade_model type:", type(bygrade_model))
|
168 |
-
#print("gia_model type:", type(gia_model))
|
169 |
print("================================")
|
170 |
-
#print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
171 |
|
172 |
# List of label encoder names.
|
173 |
encoder_list = [
|
174 |
-
'
|
175 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
176 |
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
|
177 |
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
|
@@ -189,15 +189,15 @@ for val in encoder_list:
|
|
189 |
encoder_file = enc_path / f"label_encoder_{val}.joblib"
|
190 |
loaded_label_encoder[val] = load(encoder_file)
|
191 |
|
192 |
-
#
|
193 |
# Utility: Allowed File Check
|
194 |
-
#
|
195 |
def allowed_file(filename):
|
196 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
197 |
|
198 |
-
#
|
199 |
# Routes
|
200 |
-
#
|
201 |
@app.route('/')
|
202 |
def index():
|
203 |
return render_template('index.html')
|
@@ -249,17 +249,15 @@ def predict():
|
|
249 |
print('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
250 |
return redirect(url_for('index'))
|
251 |
|
252 |
-
|
253 |
-
|
254 |
def process_dataframe(df):
|
255 |
try:
|
256 |
#df = df[df["MkblAmt"].notna()]
|
257 |
|
258 |
# Define the columns needed for two parts.
|
259 |
-
required_columns = ['
|
260 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
261 |
'EngPav', 'EngAmt']
|
262 |
-
required_columns_2 = ['
|
263 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
264 |
|
265 |
# Create two DataFrames: one for prediction and one for classification.
|
@@ -269,7 +267,7 @@ def process_dataframe(df):
|
|
269 |
df_class = df[required_columns_2].fillna("NA").copy()
|
270 |
|
271 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|
272 |
-
for col in ['
|
273 |
try:
|
274 |
encoder = loaded_label_encoder[col]
|
275 |
df_pred[col] = df_pred[col].map(lambda x: encoder.transform([x])[0] if x in encoder.classes_ else -1)
|
@@ -279,38 +277,24 @@ def process_dataframe(df):
|
|
279 |
return pd.DataFrame(), pd.DataFrame()
|
280 |
|
281 |
# Update the classification DataFrame with the transformed prediction columns.
|
282 |
-
for col in ['
|
283 |
df_class[col] = df_pred[col]
|
284 |
|
285 |
-
# Transform the extra columns in the classification DataFrame.
|
286 |
-
#for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
287 |
-
# try:
|
288 |
-
# df_class[col] = loaded_label_encoder[col].transform(df_class[col])
|
289 |
-
# except ValueError as e:
|
290 |
-
# print(f'Invalid value in column {col}: {e}', 'error')
|
291 |
-
# return pd.DataFrame(), pd.DataFrame()
|
292 |
-
|
293 |
-
# Convert both DataFrames to float.
|
294 |
df_pred = df_pred.astype(float)
|
295 |
df_class = df_class.astype(float)
|
296 |
|
297 |
-
#
|
298 |
# Prediction Report Section
|
299 |
-
#
|
300 |
try:
|
301 |
|
302 |
# for model BLK CODE
|
303 |
df_pred_0 = df_pred.copy()
|
304 |
df_pred_0['Change_Blk_Eng_to_Mkbl_value'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value"])
|
305 |
print(df_pred_0.columns)
|
306 |
-
|
307 |
-
# for model SHP CODE (need change)
|
308 |
-
df_pred_0['Change_shape_value'] = pd.DataFrame(shape_change.predict(df_pred), columns=["Change_shape_value"])
|
309 |
-
print(df_pred_0.columns)
|
310 |
|
311 |
-
'''
|
312 |
# for model WHT CODE
|
313 |
-
df_pred_0['Change_Wht_Eng_to_Mkbl_value'] = pd.DataFrame(
|
314 |
print(df_pred_0.columns)
|
315 |
|
316 |
# for model PAV CODE (need change)
|
@@ -321,30 +305,34 @@ def process_dataframe(df):
|
|
321 |
df_pred_0['Change_Open_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value"])
|
322 |
print(df_pred_0.columns)
|
323 |
|
|
|
|
|
|
|
|
|
324 |
# for model COL CODE (need change)
|
325 |
-
df_pred_0['Change_color_value'] = pd.DataFrame(mkble_amt_class_model.predict(
|
326 |
print(df_pred_0.columns)
|
327 |
|
328 |
# for model CUT CODE (need change)
|
329 |
-
df_pred_0['Change_cut_value'] = pd.DataFrame(mkble_amt_class_model.predict(
|
330 |
print(df_pred_0.columns)
|
331 |
|
332 |
# for model QUA CODE (need change)
|
333 |
-
df_pred_0['Change_quality_value'] = pd.DataFrame(mkble_amt_class_model.predict(
|
334 |
print(df_pred_0.columns)
|
335 |
-
|
336 |
# Concatenate the DataFrames row-wise
|
337 |
#df_pred_main = pd.concat([df_pred_0, df_pred_1, df_pred_0], ignore_index=True)
|
338 |
df_pred_main = df_pred_0.copy()
|
339 |
|
340 |
-
for col in ['
|
341 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
342 |
'Change_shape_value',
|
343 |
-
|
344 |
'Change_Blk_Eng_to_Mkbl_value',
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
#'Change_Blk_Eng_to_Grd_value','Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
349 |
#'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value', 'Change_Pav_Eng_to_ByGrd_value',
|
350 |
#'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value', 'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'
|
@@ -384,9 +372,9 @@ def process_dataframe(df):
|
|
384 |
print(f'Error processing file: {e}', 'error')
|
385 |
return pd.DataFrame(), pd.DataFrame()
|
386 |
|
387 |
-
#
|
388 |
# Report View Route with Pagination & Toggle
|
389 |
-
#
|
390 |
|
391 |
@app.route("/report")
|
392 |
def report_view():
|
|
|
76 |
app.config['MODEL_FOLDER'] = MODEL_FOLDER
|
77 |
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
78 |
|
|
|
|
|
|
|
|
|
79 |
# Prediction analysis models loaded from Hugging Face.
|
80 |
|
81 |
|
82 |
#classsification model on the task
|
83 |
+
# ----------------------------------------------
|
84 |
+
# Code classification models for real data.
|
85 |
+
# ----------------------------------------------
|
86 |
+
#black code change
|
87 |
src_path = hf_hub_download(
|
88 |
repo_id="WebashalarForML/Diamond_model_",
|
89 |
+
filename="CLASS_DUMMY/DT_best__2_class_blk(M)_change.pkl",
|
90 |
cache_dir=MODEL_FOLDER
|
91 |
)
|
92 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_blk(M)_change.pkl")
|
93 |
shutil.copy(src_path, dst_path)
|
94 |
+
blk_change = load(dst_path)
|
|
|
95 |
|
96 |
+
# white code change
|
97 |
src_path = hf_hub_download(
|
98 |
repo_id="WebashalarForML/Diamond_model_",
|
99 |
+
filename="CLASS_DUMMY/DT_best__2_class_wht(M)_change.pkl",
|
100 |
cache_dir=MODEL_FOLDER
|
101 |
)
|
102 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_wht(M)_change.pkl")
|
103 |
shutil.copy(src_path, dst_path)
|
104 |
+
wht_change = load(dst_path)
|
105 |
+
|
106 |
+
# pav code change
|
107 |
src_path = hf_hub_download(
|
108 |
repo_id="WebashalarForML/Diamond_model_",
|
109 |
+
filename="CLASS_DUMMY/DT_best__2_class_pav(M)_change.pkl",
|
110 |
cache_dir=MODEL_FOLDER
|
111 |
)
|
112 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_pav(M)_change.pkl")
|
113 |
shutil.copy(src_path, dst_path)
|
114 |
+
pav_change = load(dst_path)
|
|
|
115 |
|
116 |
+
#open code change
|
117 |
src_path = hf_hub_download(
|
118 |
repo_id="WebashalarForML/Diamond_model_",
|
119 |
+
filename="CLASS_DUMMY/DT_best__2_class_open(M)_change.pkl",
|
120 |
cache_dir=MODEL_FOLDER
|
121 |
)
|
122 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_open(M)_change.pkl")
|
123 |
shutil.copy(src_path, dst_path)
|
124 |
+
open_change = load(dst_path)
|
125 |
+
|
126 |
+
# ----------------------------------------------
|
127 |
+
# parameter classification models for real data.
|
128 |
+
# ----------------------------------------------
|
129 |
|
130 |
+
#shape change
|
131 |
src_path = hf_hub_download(
|
132 |
repo_id="WebashalarForML/Diamond_model_",
|
133 |
+
filename="CLASS_DUMMY/DT_best__2_class_shp_change.pkl",
|
134 |
cache_dir=MODEL_FOLDER
|
135 |
)
|
136 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_shp_change.pkl")
|
137 |
shutil.copy(src_path, dst_path)
|
138 |
+
shape_change = load(dst_path)
|
139 |
|
140 |
+
# color change
|
141 |
src_path = hf_hub_download(
|
142 |
repo_id="WebashalarForML/Diamond_model_",
|
143 |
+
filename="CLASS_DUMMY/DT_best__2_class_col_change.pkl",
|
144 |
cache_dir=MODEL_FOLDER
|
145 |
)
|
146 |
+
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_col_change.pkl")
|
147 |
shutil.copy(src_path, dst_path)
|
148 |
col_change = load(dst_path)
|
149 |
|
150 |
+
# quality change
|
151 |
src_path = hf_hub_download(
|
152 |
repo_id="WebashalarForML/Diamond_model_",
|
153 |
+
filename="CLASS_DUMMY/LR_best__2_class_qua_change.pkl",
|
154 |
cache_dir=MODEL_FOLDER
|
155 |
)
|
156 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best__2_class_qua_change.pkl")
|
157 |
shutil.copy(src_path, dst_path)
|
158 |
qua_change = load(dst_path)
|
159 |
|
160 |
+
# cut change
|
161 |
src_path = hf_hub_download(
|
162 |
repo_id="WebashalarForML/Diamond_model_",
|
163 |
+
filename="CLASS_DUMMY/LR_best__2_class_cut_change.pkl",
|
164 |
cache_dir=MODEL_FOLDER
|
165 |
)
|
166 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best__2_class_cut_change.pkl")
|
167 |
shutil.copy(src_path, dst_path)
|
168 |
cut_change = load(dst_path)
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
print("================================")
|
|
|
171 |
|
172 |
# List of label encoder names.
|
173 |
encoder_list = [
|
174 |
+
'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
175 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
176 |
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
|
177 |
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
|
|
|
189 |
encoder_file = enc_path / f"label_encoder_{val}.joblib"
|
190 |
loaded_label_encoder[val] = load(encoder_file)
|
191 |
|
192 |
+
# -----------------------------------------
|
193 |
# Utility: Allowed File Check
|
194 |
+
# -----------------------------------------
|
195 |
def allowed_file(filename):
|
196 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
197 |
|
198 |
+
# -----------------------------------------
|
199 |
# Routes
|
200 |
+
# -----------------------------------------
|
201 |
@app.route('/')
|
202 |
def index():
|
203 |
return render_template('index.html')
|
|
|
249 |
print('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
250 |
return redirect(url_for('index'))
|
251 |
|
|
|
|
|
252 |
def process_dataframe(df):
|
253 |
try:
|
254 |
#df = df[df["MkblAmt"].notna()]
|
255 |
|
256 |
# Define the columns needed for two parts.
|
257 |
+
required_columns = ['EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
258 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
259 |
'EngPav', 'EngAmt']
|
260 |
+
required_columns_2 = ['EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
261 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
262 |
|
263 |
# Create two DataFrames: one for prediction and one for classification.
|
|
|
267 |
df_class = df[required_columns_2].fillna("NA").copy()
|
268 |
|
269 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|
270 |
+
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
271 |
try:
|
272 |
encoder = loaded_label_encoder[col]
|
273 |
df_pred[col] = df_pred[col].map(lambda x: encoder.transform([x])[0] if x in encoder.classes_ else -1)
|
|
|
277 |
return pd.DataFrame(), pd.DataFrame()
|
278 |
|
279 |
# Update the classification DataFrame with the transformed prediction columns.
|
280 |
+
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
281 |
df_class[col] = df_pred[col]
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
df_pred = df_pred.astype(float)
|
284 |
df_class = df_class.astype(float)
|
285 |
|
286 |
+
# ------------------------------------
|
287 |
# Prediction Report Section
|
288 |
+
# ------------------------------------
|
289 |
try:
|
290 |
|
291 |
# for model BLK CODE
|
292 |
df_pred_0 = df_pred.copy()
|
293 |
df_pred_0['Change_Blk_Eng_to_Mkbl_value'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value"])
|
294 |
print(df_pred_0.columns)
|
|
|
|
|
|
|
|
|
295 |
|
|
|
296 |
# for model WHT CODE
|
297 |
+
df_pred_0['Change_Wht_Eng_to_Mkbl_value'] = pd.DataFrame(wht_change.predict(df_pred), columns=["Change_Wht_Eng_to_Mkbl_value"])
|
298 |
print(df_pred_0.columns)
|
299 |
|
300 |
# for model PAV CODE (need change)
|
|
|
305 |
df_pred_0['Change_Open_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value"])
|
306 |
print(df_pred_0.columns)
|
307 |
|
308 |
+
# for model SHP CODE (need change)
|
309 |
+
df_pred_0['Change_shape_value'] = pd.DataFrame(shape_change.predict(df_class), columns=["Change_shape_value"])
|
310 |
+
print(df_pred_0.columns)
|
311 |
+
|
312 |
# for model COL CODE (need change)
|
313 |
+
df_pred_0['Change_color_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_class), columns=["Change_color_value"])
|
314 |
print(df_pred_0.columns)
|
315 |
|
316 |
# for model CUT CODE (need change)
|
317 |
+
df_pred_0['Change_cut_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_class), columns=["Change_cut_value"])
|
318 |
print(df_pred_0.columns)
|
319 |
|
320 |
# for model QUA CODE (need change)
|
321 |
+
df_pred_0['Change_quality_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_class), columns=["Change_quality_value"])
|
322 |
print(df_pred_0.columns)
|
323 |
+
|
324 |
# Concatenate the DataFrames row-wise
|
325 |
#df_pred_main = pd.concat([df_pred_0, df_pred_1, df_pred_0], ignore_index=True)
|
326 |
df_pred_main = df_pred_0.copy()
|
327 |
|
328 |
+
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
329 |
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
330 |
'Change_shape_value',
|
331 |
+
'Change_cts_value','Change_quality_value', 'Change_color_value', 'Change_cut_value',
|
332 |
'Change_Blk_Eng_to_Mkbl_value',
|
333 |
+
'Change_Wht_Eng_to_Mkbl_value',
|
334 |
+
'Change_Open_Eng_to_Mkbl_value',
|
335 |
+
'Change_Pav_Eng_to_Mkbl_value',
|
336 |
#'Change_Blk_Eng_to_Grd_value','Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
337 |
#'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value', 'Change_Pav_Eng_to_ByGrd_value',
|
338 |
#'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value', 'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'
|
|
|
372 |
print(f'Error processing file: {e}', 'error')
|
373 |
return pd.DataFrame(), pd.DataFrame()
|
374 |
|
375 |
+
# ----------------------------------------------------
|
376 |
# Report View Route with Pagination & Toggle
|
377 |
+
# ----------------------------------------------------
|
378 |
|
379 |
@app.route("/report")
|
380 |
def report_view():
|