Spaces:
Sleeping
Sleeping
| from ..libmp.backend import xrange | |
| from .calculus import defun | |
| #----------------------------------------------------------------------------# | |
| # Polynomials # | |
| #----------------------------------------------------------------------------# | |
| # XXX: extra precision | |
| def polyval(ctx, coeffs, x, derivative=False): | |
| r""" | |
| Given coefficients `[c_n, \ldots, c_2, c_1, c_0]` and a number `x`, | |
| :func:`~mpmath.polyval` evaluates the polynomial | |
| .. math :: | |
| P(x) = c_n x^n + \ldots + c_2 x^2 + c_1 x + c_0. | |
| If *derivative=True* is set, :func:`~mpmath.polyval` simultaneously | |
| evaluates `P(x)` with the derivative, `P'(x)`, and returns the | |
| tuple `(P(x), P'(x))`. | |
| >>> from mpmath import * | |
| >>> mp.pretty = True | |
| >>> polyval([3, 0, 2], 0.5) | |
| 2.75 | |
| >>> polyval([3, 0, 2], 0.5, derivative=True) | |
| (2.75, 3.0) | |
| The coefficients and the evaluation point may be any combination | |
| of real or complex numbers. | |
| """ | |
| if not coeffs: | |
| return ctx.zero | |
| p = ctx.convert(coeffs[0]) | |
| q = ctx.zero | |
| for c in coeffs[1:]: | |
| if derivative: | |
| q = p + x*q | |
| p = c + x*p | |
| if derivative: | |
| return p, q | |
| else: | |
| return p | |
| def polyroots(ctx, coeffs, maxsteps=50, cleanup=True, extraprec=10, | |
| error=False, roots_init=None): | |
| """ | |
| Computes all roots (real or complex) of a given polynomial. | |
| The roots are returned as a sorted list, where real roots appear first | |
| followed by complex conjugate roots as adjacent elements. The polynomial | |
| should be given as a list of coefficients, in the format used by | |
| :func:`~mpmath.polyval`. The leading coefficient must be nonzero. | |
| With *error=True*, :func:`~mpmath.polyroots` returns a tuple *(roots, err)* | |
| where *err* is an estimate of the maximum error among the computed roots. | |
| **Examples** | |
| Finding the three real roots of `x^3 - x^2 - 14x + 24`:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = True | |
| >>> nprint(polyroots([1,-1,-14,24]), 4) | |
| [-4.0, 2.0, 3.0] | |
| Finding the two complex conjugate roots of `4x^2 + 3x + 2`, with an | |
| error estimate:: | |
| >>> roots, err = polyroots([4,3,2], error=True) | |
| >>> for r in roots: | |
| ... print(r) | |
| ... | |
| (-0.375 + 0.59947894041409j) | |
| (-0.375 - 0.59947894041409j) | |
| >>> | |
| >>> err | |
| 2.22044604925031e-16 | |
| >>> | |
| >>> polyval([4,3,2], roots[0]) | |
| (2.22044604925031e-16 + 0.0j) | |
| >>> polyval([4,3,2], roots[1]) | |
| (2.22044604925031e-16 + 0.0j) | |
| The following example computes all the 5th roots of unity; that is, | |
| the roots of `x^5 - 1`:: | |
| >>> mp.dps = 20 | |
| >>> for r in polyroots([1, 0, 0, 0, 0, -1]): | |
| ... print(r) | |
| ... | |
| 1.0 | |
| (-0.8090169943749474241 + 0.58778525229247312917j) | |
| (-0.8090169943749474241 - 0.58778525229247312917j) | |
| (0.3090169943749474241 + 0.95105651629515357212j) | |
| (0.3090169943749474241 - 0.95105651629515357212j) | |
| **Precision and conditioning** | |
| The roots are computed to the current working precision accuracy. If this | |
| accuracy cannot be achieved in ``maxsteps`` steps, then a | |
| ``NoConvergence`` exception is raised. The algorithm internally is using | |
| the current working precision extended by ``extraprec``. If | |
| ``NoConvergence`` was raised, that is caused either by not having enough | |
| extra precision to achieve convergence (in which case increasing | |
| ``extraprec`` should fix the problem) or too low ``maxsteps`` (in which | |
| case increasing ``maxsteps`` should fix the problem), or a combination of | |
| both. | |
| The user should always do a convergence study with regards to | |
| ``extraprec`` to ensure accurate results. It is possible to get | |
| convergence to a wrong answer with too low ``extraprec``. | |
| Provided there are no repeated roots, :func:`~mpmath.polyroots` can | |
| typically compute all roots of an arbitrary polynomial to high precision:: | |
| >>> mp.dps = 60 | |
| >>> for r in polyroots([1, 0, -10, 0, 1]): | |
| ... print(r) | |
| ... | |
| -3.14626436994197234232913506571557044551247712918732870123249 | |
| -0.317837245195782244725757617296174288373133378433432554879127 | |
| 0.317837245195782244725757617296174288373133378433432554879127 | |
| 3.14626436994197234232913506571557044551247712918732870123249 | |
| >>> | |
| >>> sqrt(3) + sqrt(2) | |
| 3.14626436994197234232913506571557044551247712918732870123249 | |
| >>> sqrt(3) - sqrt(2) | |
| 0.317837245195782244725757617296174288373133378433432554879127 | |
| **Algorithm** | |
| :func:`~mpmath.polyroots` implements the Durand-Kerner method [1], which | |
| uses complex arithmetic to locate all roots simultaneously. | |
| The Durand-Kerner method can be viewed as approximately performing | |
| simultaneous Newton iteration for all the roots. In particular, | |
| the convergence to simple roots is quadratic, just like Newton's | |
| method. | |
| Although all roots are internally calculated using complex arithmetic, any | |
| root found to have an imaginary part smaller than the estimated numerical | |
| error is truncated to a real number (small real parts are also chopped). | |
| Real roots are placed first in the returned list, sorted by value. The | |
| remaining complex roots are sorted by their real parts so that conjugate | |
| roots end up next to each other. | |
| **References** | |
| 1. http://en.wikipedia.org/wiki/Durand-Kerner_method | |
| """ | |
| if len(coeffs) <= 1: | |
| if not coeffs or not coeffs[0]: | |
| raise ValueError("Input to polyroots must not be the zero polynomial") | |
| # Constant polynomial with no roots | |
| return [] | |
| orig = ctx.prec | |
| tol = +ctx.eps | |
| with ctx.extraprec(extraprec): | |
| deg = len(coeffs) - 1 | |
| # Must be monic | |
| lead = ctx.convert(coeffs[0]) | |
| if lead == 1: | |
| coeffs = [ctx.convert(c) for c in coeffs] | |
| else: | |
| coeffs = [c/lead for c in coeffs] | |
| f = lambda x: ctx.polyval(coeffs, x) | |
| if roots_init is None: | |
| roots = [ctx.mpc((0.4+0.9j)**n) for n in xrange(deg)] | |
| else: | |
| roots = [None]*deg; | |
| deg_init = min(deg, len(roots_init)) | |
| roots[:deg_init] = list(roots_init[:deg_init]) | |
| roots[deg_init:] = [ctx.mpc((0.4+0.9j)**n) for n | |
| in xrange(deg_init,deg)] | |
| err = [ctx.one for n in xrange(deg)] | |
| # Durand-Kerner iteration until convergence | |
| for step in xrange(maxsteps): | |
| if abs(max(err)) < tol: | |
| break | |
| for i in xrange(deg): | |
| p = roots[i] | |
| x = f(p) | |
| for j in range(deg): | |
| if i != j: | |
| try: | |
| x /= (p-roots[j]) | |
| except ZeroDivisionError: | |
| continue | |
| roots[i] = p - x | |
| err[i] = abs(x) | |
| if abs(max(err)) >= tol: | |
| raise ctx.NoConvergence("Didn't converge in maxsteps=%d steps." \ | |
| % maxsteps) | |
| # Remove small real or imaginary parts | |
| if cleanup: | |
| for i in xrange(deg): | |
| if abs(roots[i]) < tol: | |
| roots[i] = ctx.zero | |
| elif abs(ctx._im(roots[i])) < tol: | |
| roots[i] = roots[i].real | |
| elif abs(ctx._re(roots[i])) < tol: | |
| roots[i] = roots[i].imag * 1j | |
| roots.sort(key=lambda x: (abs(ctx._im(x)), ctx._re(x))) | |
| if error: | |
| err = max(err) | |
| err = max(err, ctx.ldexp(1, -orig+1)) | |
| return [+r for r in roots], +err | |
| else: | |
| return [+r for r in roots] | |