Spaces:
Sleeping
Sleeping
| """ | |
| --------------------------------------------------------------------- | |
| .. sectionauthor:: Juan Arias de Reyna <arias@us.es> | |
| This module implements zeta-related functions using the Riemann-Siegel | |
| expansion: zeta_offline(s,k=0) | |
| * coef(J, eps): Need in the computation of Rzeta(s,k) | |
| * Rzeta_simul(s, der=0) computes Rzeta^(k)(s) and Rzeta^(k)(1-s) simultaneously | |
| for 0 <= k <= der. Used by zeta_offline and z_offline | |
| * Rzeta_set(s, derivatives) computes Rzeta^(k)(s) for given derivatives, used by | |
| z_half(t,k) and zeta_half | |
| * z_offline(w,k): Z(w) and its derivatives of order k <= 4 | |
| * z_half(t,k): Z(t) (Riemann Siegel function) and its derivatives of order k <= 4 | |
| * zeta_offline(s): zeta(s) and its derivatives of order k<= 4 | |
| * zeta_half(1/2+it,k): zeta(s) and its derivatives of order k<= 4 | |
| * rs_zeta(s,k=0) Computes zeta^(k)(s) Unifies zeta_half and zeta_offline | |
| * rs_z(w,k=0) Computes Z^(k)(w) Unifies z_offline and z_half | |
| ---------------------------------------------------------------------- | |
| This program uses Riemann-Siegel expansion even to compute | |
| zeta(s) on points s = sigma + i t with sigma arbitrary not | |
| necessarily equal to 1/2. | |
| It is founded on a new deduction of the formula, with rigorous | |
| and sharp bounds for the terms and rest of this expansion. | |
| More information on the papers: | |
| J. Arias de Reyna, High Precision Computation of Riemann's | |
| Zeta Function by the Riemann-Siegel Formula I, II | |
| We refer to them as I, II. | |
| In them we shall find detailed explanation of all the | |
| procedure. | |
| The program uses Riemann-Siegel expansion. | |
| This is useful when t is big, ( say t > 10000 ). | |
| The precision is limited, roughly it can compute zeta(sigma+it) | |
| with an error less than exp(-c t) for some constant c depending | |
| on sigma. The program gives an error when the Riemann-Siegel | |
| formula can not compute to the wanted precision. | |
| """ | |
| import math | |
| class RSCache(object): | |
| def __init__(ctx): | |
| ctx._rs_cache = [0, 10, {}, {}] | |
| from .functions import defun | |
| #-------------------------------------------------------------------------------# | |
| # # | |
| # coef(ctx, J, eps, _cache=[0, 10, {} ] ) # | |
| # # | |
| #-------------------------------------------------------------------------------# | |
| # This function computes the coefficients c[n] defined on (I, equation (47)) | |
| # but see also (II, section 3.14). | |
| # | |
| # Since these coefficients are very difficult to compute we save the values | |
| # in a cache. So if we compute several values of the functions Rzeta(s) for | |
| # near values of s, we do not recompute these coefficients. | |
| # | |
| # c[n] are the Taylor coefficients of the function: | |
| # | |
| # F(z):= (exp(pi*j*(z*z/2+3/8))-j* sqrt(2) cos(pi*z/2))/(2*cos(pi *z)) | |
| # | |
| # | |
| def _coef(ctx, J, eps): | |
| r""" | |
| Computes the coefficients `c_n` for `0\le n\le 2J` with error less than eps | |
| **Definition** | |
| The coefficients c_n are defined by | |
| .. math :: | |
| \begin{equation} | |
| F(z)=\frac{e^{\pi i | |
| \bigl(\frac{z^2}{2}+\frac38\bigr)}-i\sqrt{2}\cos\frac{\pi}{2}z}{2\cos\pi | |
| z}=\sum_{n=0}^\infty c_{2n} z^{2n} | |
| \end{equation} | |
| they are computed applying the relation | |
| .. math :: | |
| \begin{multline} | |
| c_{2n}=-\frac{i}{\sqrt{2}}\Bigl(\frac{\pi}{2}\Bigr)^{2n} | |
| \sum_{k=0}^n\frac{(-1)^k}{(2k)!} | |
| 2^{2n-2k}\frac{(-1)^{n-k}E_{2n-2k}}{(2n-2k)!}+\\ | |
| +e^{3\pi i/8}\sum_{j=0}^n(-1)^j\frac{ | |
| E_{2j}}{(2j)!}\frac{i^{n-j}\pi^{n+j}}{(n-j)!2^{n-j+1}}. | |
| \end{multline} | |
| """ | |
| newJ = J+2 # compute more coefficients that are needed | |
| neweps6 = eps/2. # compute with a slight more precision that are needed | |
| # PREPARATION FOR THE COMPUTATION OF V(N) AND W(N) | |
| # See II Section 3.16 | |
| # | |
| # Computing the exponent wpvw of the error II equation (81) | |
| wpvw = max(ctx.mag(10*(newJ+3)), 4*newJ+5-ctx.mag(neweps6)) | |
| # Preparation of Euler numbers (we need until the 2*RS_NEWJ) | |
| E = ctx._eulernum(2*newJ) | |
| # Now we have in the cache all the needed Euler numbers. | |
| # | |
| # Computing the powers of pi | |
| # | |
| # We need to compute the powers pi**n for 1<= n <= 2*J | |
| # with relative error less than 2**(-wpvw) | |
| # it is easy to show that this is obtained | |
| # taking wppi as the least d with | |
| # 2**d>40*J and 2**d> 4.24 *newJ + 2**wpvw | |
| # In II Section 3.9 we need also that | |
| # wppi > wptcoef[0], and that the powers | |
| # here computed 0<= k <= 2*newJ are more | |
| # than those needed there that are 2*L-2. | |
| # so we need J >= L this will be checked | |
| # before computing tcoef[] | |
| wppi = max(ctx.mag(40*newJ), ctx.mag(newJ)+3 +wpvw) | |
| ctx.prec = wppi | |
| pipower = {} | |
| pipower[0] = ctx.one | |
| pipower[1] = ctx.pi | |
| for n in range(2,2*newJ+1): | |
| pipower[n] = pipower[n-1]*ctx.pi | |
| # COMPUTING THE COEFFICIENTS v(n) AND w(n) | |
| # see II equation (61) and equations (81) and (82) | |
| ctx.prec = wpvw+2 | |
| v={} | |
| w={} | |
| for n in range(0,newJ+1): | |
| va = (-1)**n * ctx._eulernum(2*n) | |
| va = ctx.mpf(va)/ctx.fac(2*n) | |
| v[n]=va*pipower[2*n] | |
| for n in range(0,2*newJ+1): | |
| wa = ctx.one/ctx.fac(n) | |
| wa=wa/(2**n) | |
| w[n]=wa*pipower[n] | |
| # COMPUTATION OF THE CONVOLUTIONS RS_P1 AND RS_P2 | |
| # See II Section 3.16 | |
| ctx.prec = 15 | |
| wpp1a = 9 - ctx.mag(neweps6) | |
| P1 = {} | |
| for n in range(0,newJ+1): | |
| ctx.prec = 15 | |
| wpp1 = max(ctx.mag(10*(n+4)),4*n+wpp1a) | |
| ctx.prec = wpp1 | |
| sump = 0 | |
| for k in range(0,n+1): | |
| sump += ((-1)**k) * v[k]*w[2*n-2*k] | |
| P1[n]=((-1)**(n+1))*ctx.j*sump | |
| P2={} | |
| for n in range(0,newJ+1): | |
| ctx.prec = 15 | |
| wpp2 = max(ctx.mag(10*(n+4)),4*n+wpp1a) | |
| ctx.prec = wpp2 | |
| sump = 0 | |
| for k in range(0,n+1): | |
| sump += (ctx.j**(n-k)) * v[k]*w[n-k] | |
| P2[n]=sump | |
| # COMPUTING THE COEFFICIENTS c[2n] | |
| # See II Section 3.14 | |
| ctx.prec = 15 | |
| wpc0 = 5 - ctx.mag(neweps6) | |
| wpc = max(6,4*newJ+wpc0) | |
| ctx.prec = wpc | |
| mu = ctx.sqrt(ctx.mpf('2'))/2 | |
| nu = ctx.expjpi(3./8)/2 | |
| c={} | |
| for n in range(0,newJ): | |
| ctx.prec = 15 | |
| wpc = max(6,4*n+wpc0) | |
| ctx.prec = wpc | |
| c[2*n] = mu*P1[n]+nu*P2[n] | |
| for n in range(1,2*newJ,2): | |
| c[n] = 0 | |
| return [newJ, neweps6, c, pipower] | |
| def coef(ctx, J, eps): | |
| _cache = ctx._rs_cache | |
| if J <= _cache[0] and eps >= _cache[1]: | |
| return _cache[2], _cache[3] | |
| orig = ctx._mp.prec | |
| try: | |
| data = _coef(ctx._mp, J, eps) | |
| finally: | |
| ctx._mp.prec = orig | |
| if ctx is not ctx._mp: | |
| data[2] = dict((k,ctx.convert(v)) for (k,v) in data[2].items()) | |
| data[3] = dict((k,ctx.convert(v)) for (k,v) in data[3].items()) | |
| ctx._rs_cache[:] = data | |
| return ctx._rs_cache[2], ctx._rs_cache[3] | |
| #-------------------------------------------------------------------------------# | |
| # # | |
| # Rzeta_simul(s,k=0) # | |
| # # | |
| #-------------------------------------------------------------------------------# | |
| # This function return a list with the values: | |
| # Rzeta(sigma+it), conj(Rzeta(1-sigma+it)),Rzeta'(sigma+it), conj(Rzeta'(1-sigma+it)), | |
| # .... , Rzeta^{(k)}(sigma+it), conj(Rzeta^{(k)}(1-sigma+it)) | |
| # | |
| # Useful to compute the function zeta(s) and Z(w) or its derivatives. | |
| # | |
| def aux_M_Fp(ctx, xA, xeps4, a, xB1, xL): | |
| # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE | |
| # See II Section 3.11 equations (47) and (48) | |
| aux1 = 126.0657606*xA/xeps4 # 126.06.. = 316/sqrt(2*pi) | |
| aux1 = ctx.ln(aux1) | |
| aux2 = (2*ctx.ln(ctx.pi)+ctx.ln(xB1)+ctx.ln(a))/3 -ctx.ln(2*ctx.pi)/2 | |
| m = 3*xL-3 | |
| aux3= (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) | |
| while((aux1 < m*aux2+ aux3)and (m>1)): | |
| m = m - 1 | |
| aux3 = (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) | |
| xM = m | |
| return xM | |
| def aux_J_needed(ctx, xA, xeps4, a, xB1, xM): | |
| # DETERMINATION OF J THE NUMBER OF TERMS NEEDED | |
| # IN THE TAYLOR SERIES OF F. | |
| # See II Section 3.11 equation (49)) | |
| # Only determine one | |
| h1 = xeps4/(632*xA) | |
| h2 = xB1*a * 126.31337419529260248 # = pi^2*e^2*sqrt(3) | |
| h2 = h1 * ctx.power((h2/xM**2),(xM-1)/3) / xM | |
| h3 = min(h1,h2) | |
| return h3 | |
| def Rzeta_simul(ctx, s, der=0): | |
| # First we take the value of ctx.prec | |
| wpinitial = ctx.prec | |
| # INITIALIZATION | |
| # Take the real and imaginary part of s | |
| t = ctx._im(s) | |
| xsigma = ctx._re(s) | |
| ysigma = 1 - xsigma | |
| # Now compute several parameter that appear on the program | |
| ctx.prec = 15 | |
| a = ctx.sqrt(t/(2*ctx.pi)) | |
| xasigma = a ** xsigma | |
| yasigma = a ** ysigma | |
| # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) | |
| xA1=ctx.power(2, ctx.mag(xasigma)-1) | |
| yA1=ctx.power(2, ctx.mag(yasigma)-1) | |
| # We compute various epsilon's (see II end of Section 3.1) | |
| eps = ctx.power(2, -wpinitial) | |
| eps1 = eps/6. | |
| xeps2 = eps * xA1/3. | |
| yeps2 = eps * yA1/3. | |
| # COMPUTING SOME COEFFICIENTS THAT DEPENDS | |
| # ON sigma | |
| # constant b and c (see I Theorem 2 formula (26) ) | |
| # coefficients A and B1 (see I Section 6.1 equation (50)) | |
| # | |
| # here we not need high precision | |
| ctx.prec = 15 | |
| if xsigma > 0: | |
| xb = 2. | |
| xc = math.pow(9,xsigma)/4.44288 | |
| # 4.44288 =(math.sqrt(2)*math.pi) | |
| xA = math.pow(9,xsigma) | |
| xB1 = 1 | |
| else: | |
| xb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) | |
| xc = math.pow(2,-xsigma)/4.44288 | |
| xA = math.pow(2,-xsigma) | |
| xB1 = 1.10789 # = 2*sqrt(1-log(2)) | |
| if(ysigma > 0): | |
| yb = 2. | |
| yc = math.pow(9,ysigma)/4.44288 | |
| # 4.44288 =(math.sqrt(2)*math.pi) | |
| yA = math.pow(9,ysigma) | |
| yB1 = 1 | |
| else: | |
| yb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) | |
| yc = math.pow(2,-ysigma)/4.44288 | |
| yA = math.pow(2,-ysigma) | |
| yB1 = 1.10789 # = 2*sqrt(1-log(2)) | |
| # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL | |
| # CORRECTION | |
| # See II Section 3.2 | |
| ctx.prec = 15 | |
| xL = 1 | |
| while 3*xc*ctx.gamma(xL*0.5) * ctx.power(xb*a,-xL) >= xeps2: | |
| xL = xL+1 | |
| xL = max(2,xL) | |
| yL = 1 | |
| while 3*yc*ctx.gamma(yL*0.5) * ctx.power(yb*a,-yL) >= yeps2: | |
| yL = yL+1 | |
| yL = max(2,yL) | |
| # The number L has to satify some conditions. | |
| # If not RS can not compute Rzeta(s) with the prescribed precision | |
| # (see II, Section 3.2 condition (20) ) and | |
| # (II, Section 3.3 condition (22) ). Also we have added | |
| # an additional technical condition in Section 3.17 Proposition 17 | |
| if ((3*xL >= 2*a*a/25.) or (3*xL+2+xsigma<0) or (abs(xsigma) > a/2.) or \ | |
| (3*yL >= 2*a*a/25.) or (3*yL+2+ysigma<0) or (abs(ysigma) > a/2.)): | |
| ctx.prec = wpinitial | |
| raise NotImplementedError("Riemann-Siegel can not compute with such precision") | |
| # We take the maximum of the two values | |
| L = max(xL, yL) | |
| # INITIALIZATION (CONTINUATION) | |
| # | |
| # eps3 is the constant defined on (II, Section 3.5 equation (27) ) | |
| # each term of the RS correction must be computed with error <= eps3 | |
| xeps3 = xeps2/(4*xL) | |
| yeps3 = yeps2/(4*yL) | |
| # eps4 is defined on (II Section 3.6 equation (30) ) | |
| # each component of the formula (II Section 3.6 equation (29) ) | |
| # must be computed with error <= eps4 | |
| xeps4 = xeps3/(3*xL) | |
| yeps4 = yeps3/(3*yL) | |
| # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE | |
| xM = aux_M_Fp(ctx, xA, xeps4, a, xB1, xL) | |
| yM = aux_M_Fp(ctx, yA, yeps4, a, yB1, yL) | |
| M = max(xM, yM) | |
| # COMPUTING NUMBER OF TERMS J NEEDED | |
| h3 = aux_J_needed(ctx, xA, xeps4, a, xB1, xM) | |
| h4 = aux_J_needed(ctx, yA, yeps4, a, yB1, yM) | |
| h3 = min(h3,h4) | |
| J = 12 | |
| jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) | |
| while jvalue > h3: | |
| J = J+1 | |
| jvalue = (2*ctx.pi)*jvalue/J | |
| # COMPUTING eps5[m] for 1 <= m <= 21 | |
| # See II Section 10 equation (43) | |
| # We choose the minimum of the two possibilities | |
| eps5={} | |
| xforeps5 = math.pi*math.pi*xB1*a | |
| yforeps5 = math.pi*math.pi*yB1*a | |
| for m in range(0,22): | |
| xaux1 = math.pow(xforeps5, m/3)/(316.*xA) | |
| yaux1 = math.pow(yforeps5, m/3)/(316.*yA) | |
| aux1 = min(xaux1, yaux1) | |
| aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) | |
| aux2 = math.sqrt(aux2) | |
| eps5[m] = (aux1*aux2*min(xeps4,yeps4)) | |
| # COMPUTING wpfp | |
| # See II Section 3.13 equation (59) | |
| twenty = min(3*L-3, 21)+1 | |
| aux = 6812*J | |
| wpfp = ctx.mag(44*J) | |
| for m in range(0,twenty): | |
| wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) | |
| # COMPUTING N AND p | |
| # See II Section | |
| ctx.prec = wpfp + ctx.mag(t)+20 | |
| a = ctx.sqrt(t/(2*ctx.pi)) | |
| N = ctx.floor(a) | |
| p = 1-2*(a-N) | |
| # now we get a rounded version of p | |
| # to the precision wpfp | |
| # this possibly is not necessary | |
| num=ctx.floor(p*(ctx.mpf('2')**wpfp)) | |
| difference = p * (ctx.mpf('2')**wpfp)-num | |
| if (difference < 0.5): | |
| num = num | |
| else: | |
| num = num+1 | |
| p = ctx.convert(num * (ctx.mpf('2')**(-wpfp))) | |
| # COMPUTING THE COEFFICIENTS c[n] = cc[n] | |
| # We shall use the notation cc[n], since there is | |
| # a constant that is called c | |
| # See II Section 3.14 | |
| # We compute the coefficients and also save then in a | |
| # cache. The bulk of the computation is passed to | |
| # the function coef() | |
| # | |
| # eps6 is defined in II Section 3.13 equation (58) | |
| eps6 = ctx.power(ctx.convert(2*ctx.pi), J)/(ctx.gamma(J+1)*3*J) | |
| # Now we compute the coefficients | |
| cc = {} | |
| cont = {} | |
| cont, pipowers = coef(ctx, J, eps6) | |
| cc=cont.copy() # we need a copy since we have to change his values. | |
| Fp={} # this is the adequate locus of this | |
| for n in range(M, 3*L-2): | |
| Fp[n] = 0 | |
| Fp={} | |
| ctx.prec = wpfp | |
| for m in range(0,M+1): | |
| sumP = 0 | |
| for k in range(2*J-m-1,-1,-1): | |
| sumP = (sumP * p)+ cc[k] | |
| Fp[m] = sumP | |
| # preparation of the new coefficients | |
| for k in range(0,2*J-m-1): | |
| cc[k] = (k+1)* cc[k+1] | |
| # COMPUTING THE NUMBERS xd[u,n,k], yd[u,n,k] | |
| # See II Section 3.17 | |
| # | |
| # First we compute the working precisions xwpd[k] | |
| # Se II equation (92) | |
| xwpd={} | |
| d1 = max(6,ctx.mag(40*L*L)) | |
| xd2 = 13+ctx.mag((1+abs(xsigma))*xA)-ctx.mag(xeps4)-1 | |
| xconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*xB1*xB1)) /2 | |
| for n in range(0,L): | |
| xd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*xconst)+xd2 | |
| xwpd[n]=max(xd3,d1) | |
| # procedure of II Section 3.17 | |
| ctx.prec = xwpd[1]+10 | |
| xpsigma = 1-(2*xsigma) | |
| xd = {} | |
| xd[0,0,-2]=0; xd[0,0,-1]=0; xd[0,0,0]=1; xd[0,0,1]=0 | |
| xd[0,-1,-2]=0; xd[0,-1,-1]=0; xd[0,-1,0]=1; xd[0,-1,1]=0 | |
| for n in range(1,L): | |
| ctx.prec = xwpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| m = 3*n-2*k | |
| if(m!=0): | |
| m1 = ctx.one/m | |
| c1= m1/4 | |
| c2=(xpsigma*m1)/2 | |
| c3=-(m+1) | |
| xd[0,n,k]=c3*xd[0,n-1,k-2]+c1*xd[0,n-1,k]+c2*xd[0,n-1,k-1] | |
| else: | |
| xd[0,n,k]=0 | |
| for r in range(0,k): | |
| add=xd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) | |
| xd[0,n,k] -= ((-1)**(k-r))*add | |
| xd[0,n,-2]=0; xd[0,n,-1]=0; xd[0,n,3*n//2+1]=0 | |
| for mu in range(-2,der+1): | |
| for n in range(-2,L): | |
| for k in range(-3,max(1,3*n//2+2)): | |
| if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): | |
| xd[mu,n,k] = 0 | |
| for mu in range(1,der+1): | |
| for n in range(0,L): | |
| ctx.prec = xwpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| aux=(2*mu-2)*xd[mu-2,n-2,k-3]+2*(xsigma+n-2)*xd[mu-1,n-2,k-3] | |
| xd[mu,n,k] = aux - xd[mu-1,n-1,k-1] | |
| # Now we compute the working precisions ywpd[k] | |
| # Se II equation (92) | |
| ywpd={} | |
| d1 = max(6,ctx.mag(40*L*L)) | |
| yd2 = 13+ctx.mag((1+abs(ysigma))*yA)-ctx.mag(yeps4)-1 | |
| yconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*yB1*yB1)) /2 | |
| for n in range(0,L): | |
| yd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*yconst)+yd2 | |
| ywpd[n]=max(yd3,d1) | |
| # procedure of II Section 3.17 | |
| ctx.prec = ywpd[1]+10 | |
| ypsigma = 1-(2*ysigma) | |
| yd = {} | |
| yd[0,0,-2]=0; yd[0,0,-1]=0; yd[0,0,0]=1; yd[0,0,1]=0 | |
| yd[0,-1,-2]=0; yd[0,-1,-1]=0; yd[0,-1,0]=1; yd[0,-1,1]=0 | |
| for n in range(1,L): | |
| ctx.prec = ywpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| m = 3*n-2*k | |
| if(m!=0): | |
| m1 = ctx.one/m | |
| c1= m1/4 | |
| c2=(ypsigma*m1)/2 | |
| c3=-(m+1) | |
| yd[0,n,k]=c3*yd[0,n-1,k-2]+c1*yd[0,n-1,k]+c2*yd[0,n-1,k-1] | |
| else: | |
| yd[0,n,k]=0 | |
| for r in range(0,k): | |
| add=yd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) | |
| yd[0,n,k] -= ((-1)**(k-r))*add | |
| yd[0,n,-2]=0; yd[0,n,-1]=0; yd[0,n,3*n//2+1]=0 | |
| for mu in range(-2,der+1): | |
| for n in range(-2,L): | |
| for k in range(-3,max(1,3*n//2+2)): | |
| if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): | |
| yd[mu,n,k] = 0 | |
| for mu in range(1,der+1): | |
| for n in range(0,L): | |
| ctx.prec = ywpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| aux=(2*mu-2)*yd[mu-2,n-2,k-3]+2*(ysigma+n-2)*yd[mu-1,n-2,k-3] | |
| yd[mu,n,k] = aux - yd[mu-1,n-1,k-1] | |
| # COMPUTING THE COEFFICIENTS xtcoef[k,l] | |
| # See II Section 3.9 | |
| # | |
| # computing the needed wp | |
| xwptcoef={} | |
| xwpterm={} | |
| ctx.prec = 15 | |
| c1 = ctx.mag(40*(L+2)) | |
| xc2 = ctx.mag(68*(L+2)*xA) | |
| xc4 = ctx.mag(xB1*a*math.sqrt(ctx.pi))-1 | |
| for k in range(0,L): | |
| xc3 = xc2 - k*xc4+ctx.mag(ctx.fac(k+0.5))/2. | |
| xwptcoef[k] = (max(c1,xc3-ctx.mag(xeps4)+1)+1 +20)*1.5 | |
| xwpterm[k] = (max(c1,ctx.mag(L+2)+xc3-ctx.mag(xeps3)+1)+1 +20) | |
| ywptcoef={} | |
| ywpterm={} | |
| ctx.prec = 15 | |
| c1 = ctx.mag(40*(L+2)) | |
| yc2 = ctx.mag(68*(L+2)*yA) | |
| yc4 = ctx.mag(yB1*a*math.sqrt(ctx.pi))-1 | |
| for k in range(0,L): | |
| yc3 = yc2 - k*yc4+ctx.mag(ctx.fac(k+0.5))/2. | |
| ywptcoef[k] = ((max(c1,yc3-ctx.mag(yeps4)+1))+10)*1.5 | |
| ywpterm[k] = (max(c1,ctx.mag(L+2)+yc3-ctx.mag(yeps3)+1)+1)+10 | |
| # check of power of pi | |
| # computing the fortcoef[mu,k,ell] | |
| xfortcoef={} | |
| for mu in range(0,der+1): | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| xfortcoef[mu,k,ell]=0 | |
| for mu in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = xwptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| xfortcoef[mu,k,ell]=xd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] | |
| xfortcoef[mu,k,ell]=xfortcoef[mu,k,ell]/((2*ctx.j)**ell) | |
| def trunc_a(t): | |
| wp = ctx.prec | |
| ctx.prec = wp + 2 | |
| aa = ctx.sqrt(t/(2*ctx.pi)) | |
| ctx.prec = wp | |
| return aa | |
| # computing the tcoef[k,ell] | |
| xtcoef={} | |
| for mu in range(0,der+1): | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| xtcoef[mu,k,ell]=0 | |
| ctx.prec = max(xwptcoef[0],ywptcoef[0])+3 | |
| aa= trunc_a(t) | |
| la = -ctx.ln(aa) | |
| for chi in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = xwptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| xtcoef[chi,k,ell] =0 | |
| for mu in range(0, chi+1): | |
| tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*xfortcoef[chi-mu,k,ell] | |
| xtcoef[chi,k,ell] += tcoefter | |
| # COMPUTING THE COEFFICIENTS ytcoef[k,l] | |
| # See II Section 3.9 | |
| # | |
| # computing the needed wp | |
| # check of power of pi | |
| # computing the fortcoef[mu,k,ell] | |
| yfortcoef={} | |
| for mu in range(0,der+1): | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| yfortcoef[mu,k,ell]=0 | |
| for mu in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = ywptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| yfortcoef[mu,k,ell]=yd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] | |
| yfortcoef[mu,k,ell]=yfortcoef[mu,k,ell]/((2*ctx.j)**ell) | |
| # computing the tcoef[k,ell] | |
| ytcoef={} | |
| for chi in range(0,der+1): | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| ytcoef[chi,k,ell]=0 | |
| for chi in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = ywptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| ytcoef[chi,k,ell] =0 | |
| for mu in range(0, chi+1): | |
| tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*yfortcoef[chi-mu,k,ell] | |
| ytcoef[chi,k,ell] += tcoefter | |
| # COMPUTING tv[k,ell] | |
| # See II Section 3.8 | |
| # | |
| # a has a good value | |
| ctx.prec = max(xwptcoef[0], ywptcoef[0])+2 | |
| av = {} | |
| av[0] = 1 | |
| av[1] = av[0]/a | |
| ctx.prec = max(xwptcoef[0],ywptcoef[0]) | |
| for k in range(2,L): | |
| av[k] = av[k-1] * av[1] | |
| # Computing the quotients | |
| xtv = {} | |
| for chi in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = xwptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| xtv[chi,k,ell] = xtcoef[chi,k,ell]* av[k] | |
| # Computing the quotients | |
| ytv = {} | |
| for chi in range(0,der+1): | |
| for k in range(0,L): | |
| ctx.prec = ywptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| ytv[chi,k,ell] = ytcoef[chi,k,ell]* av[k] | |
| # COMPUTING THE TERMS xterm[k] | |
| # See II Section 3.6 | |
| xterm = {} | |
| for chi in range(0,der+1): | |
| for n in range(0,L): | |
| ctx.prec = xwpterm[n] | |
| te = 0 | |
| for k in range(0, 3*n//2+1): | |
| te += xtv[chi,n,k] | |
| xterm[chi,n] = te | |
| # COMPUTING THE TERMS yterm[k] | |
| # See II Section 3.6 | |
| yterm = {} | |
| for chi in range(0,der+1): | |
| for n in range(0,L): | |
| ctx.prec = ywpterm[n] | |
| te = 0 | |
| for k in range(0, 3*n//2+1): | |
| te += ytv[chi,n,k] | |
| yterm[chi,n] = te | |
| # COMPUTING rssum | |
| # See II Section 3.5 | |
| xrssum={} | |
| ctx.prec=15 | |
| xrsbound = math.sqrt(ctx.pi) * xc /(xb*a) | |
| ctx.prec=15 | |
| xwprssum = ctx.mag(4.4*((L+3)**2)*xrsbound / xeps2) | |
| xwprssum = max(xwprssum, ctx.mag(10*(L+1))) | |
| ctx.prec = xwprssum | |
| for chi in range(0,der+1): | |
| xrssum[chi] = 0 | |
| for k in range(1,L+1): | |
| xrssum[chi] += xterm[chi,L-k] | |
| yrssum={} | |
| ctx.prec=15 | |
| yrsbound = math.sqrt(ctx.pi) * yc /(yb*a) | |
| ctx.prec=15 | |
| ywprssum = ctx.mag(4.4*((L+3)**2)*yrsbound / yeps2) | |
| ywprssum = max(ywprssum, ctx.mag(10*(L+1))) | |
| ctx.prec = ywprssum | |
| for chi in range(0,der+1): | |
| yrssum[chi] = 0 | |
| for k in range(1,L+1): | |
| yrssum[chi] += yterm[chi,L-k] | |
| # COMPUTING S3 | |
| # See II Section 3.19 | |
| ctx.prec = 15 | |
| A2 = 2**(max(ctx.mag(abs(xrssum[0])), ctx.mag(abs(yrssum[0])))) | |
| eps8 = eps/(3*A2) | |
| T = t *ctx.ln(t/(2*ctx.pi)) | |
| xwps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-xsigma))*T) | |
| ywps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-ysigma))*T) | |
| ctx.prec = max(xwps3, ywps3) | |
| tpi = t/(2*ctx.pi) | |
| arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 | |
| U = ctx.expj(-arg) | |
| a = trunc_a(t) | |
| xasigma = ctx.power(a, -xsigma) | |
| yasigma = ctx.power(a, -ysigma) | |
| xS3 = ((-1)**(N-1)) * xasigma * U | |
| yS3 = ((-1)**(N-1)) * yasigma * U | |
| # COMPUTING S1 the zetasum | |
| # See II Section 3.18 | |
| ctx.prec = 15 | |
| xwpsum = 4+ ctx.mag((N+ctx.power(N,1-xsigma))*ctx.ln(N) /eps1) | |
| ywpsum = 4+ ctx.mag((N+ctx.power(N,1-ysigma))*ctx.ln(N) /eps1) | |
| wpsum = max(xwpsum, ywpsum) | |
| ctx.prec = wpsum +10 | |
| ''' | |
| # This can be improved | |
| xS1={} | |
| yS1={} | |
| for chi in range(0,der+1): | |
| xS1[chi] = 0 | |
| yS1[chi] = 0 | |
| for n in range(1,int(N)+1): | |
| ln = ctx.ln(n) | |
| xexpn = ctx.exp(-ln*(xsigma+ctx.j*t)) | |
| yexpn = ctx.conj(1/(n*xexpn)) | |
| for chi in range(0,der+1): | |
| pown = ctx.power(-ln, chi) | |
| xterm = pown*xexpn | |
| yterm = pown*yexpn | |
| xS1[chi] += xterm | |
| yS1[chi] += yterm | |
| ''' | |
| xS1, yS1 = ctx._zetasum(s, 1, int(N)-1, range(0,der+1), True) | |
| # END OF COMPUTATION of xrz, yrz | |
| # See II Section 3.1 | |
| ctx.prec = 15 | |
| xabsS1 = abs(xS1[der]) | |
| xabsS2 = abs(xrssum[der] * xS3) | |
| xwpend = max(6, wpinitial+ctx.mag(6*(3*xabsS1+7*xabsS2) ) ) | |
| ctx.prec = xwpend | |
| xrz={} | |
| for chi in range(0,der+1): | |
| xrz[chi] = xS1[chi]+xrssum[chi]*xS3 | |
| ctx.prec = 15 | |
| yabsS1 = abs(yS1[der]) | |
| yabsS2 = abs(yrssum[der] * yS3) | |
| ywpend = max(6, wpinitial+ctx.mag(6*(3*yabsS1+7*yabsS2) ) ) | |
| ctx.prec = ywpend | |
| yrz={} | |
| for chi in range(0,der+1): | |
| yrz[chi] = yS1[chi]+yrssum[chi]*yS3 | |
| yrz[chi] = ctx.conj(yrz[chi]) | |
| ctx.prec = wpinitial | |
| return xrz, yrz | |
| def Rzeta_set(ctx, s, derivatives=[0]): | |
| r""" | |
| Computes several derivatives of the auxiliary function of Riemann `R(s)`. | |
| **Definition** | |
| The function is defined by | |
| .. math :: | |
| \begin{equation} | |
| {\mathop{\mathcal R }\nolimits}(s)= | |
| \int_{0\swarrow1}\frac{x^{-s} e^{\pi i x^2}}{e^{\pi i x}- | |
| e^{-\pi i x}}\,dx | |
| \end{equation} | |
| To this function we apply the Riemann-Siegel expansion. | |
| """ | |
| der = max(derivatives) | |
| # First we take the value of ctx.prec | |
| # During the computation we will change ctx.prec, and finally we will | |
| # restaurate the initial value | |
| wpinitial = ctx.prec | |
| # Take the real and imaginary part of s | |
| t = ctx._im(s) | |
| sigma = ctx._re(s) | |
| # Now compute several parameter that appear on the program | |
| ctx.prec = 15 | |
| a = ctx.sqrt(t/(2*ctx.pi)) # Careful | |
| asigma = ctx.power(a, sigma) # Careful | |
| # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) | |
| A1 = ctx.power(2, ctx.mag(asigma)-1) | |
| # We compute various epsilon's (see II end of Section 3.1) | |
| eps = ctx.power(2, -wpinitial) | |
| eps1 = eps/6. | |
| eps2 = eps * A1/3. | |
| # COMPUTING SOME COEFFICIENTS THAT DEPENDS | |
| # ON sigma | |
| # constant b and c (see I Theorem 2 formula (26) ) | |
| # coefficients A and B1 (see I Section 6.1 equation (50)) | |
| # here we not need high precision | |
| ctx.prec = 15 | |
| if sigma > 0: | |
| b = 2. | |
| c = math.pow(9,sigma)/4.44288 | |
| # 4.44288 =(math.sqrt(2)*math.pi) | |
| A = math.pow(9,sigma) | |
| B1 = 1 | |
| else: | |
| b = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) | |
| c = math.pow(2,-sigma)/4.44288 | |
| A = math.pow(2,-sigma) | |
| B1 = 1.10789 # = 2*sqrt(1-log(2)) | |
| # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL | |
| # CORRECTION | |
| # See II Section 3.2 | |
| ctx.prec = 15 | |
| L = 1 | |
| while 3*c*ctx.gamma(L*0.5) * ctx.power(b*a,-L) >= eps2: | |
| L = L+1 | |
| L = max(2,L) | |
| # The number L has to satify some conditions. | |
| # If not RS can not compute Rzeta(s) with the prescribed precision | |
| # (see II, Section 3.2 condition (20) ) and | |
| # (II, Section 3.3 condition (22) ). Also we have added | |
| # an additional technical condition in Section 3.17 Proposition 17 | |
| if ((3*L >= 2*a*a/25.) or (3*L+2+sigma<0) or (abs(sigma)> a/2.)): | |
| #print 'Error Riemann-Siegel can not compute with such precision' | |
| ctx.prec = wpinitial | |
| raise NotImplementedError("Riemann-Siegel can not compute with such precision") | |
| # INITIALIZATION (CONTINUATION) | |
| # | |
| # eps3 is the constant defined on (II, Section 3.5 equation (27) ) | |
| # each term of the RS correction must be computed with error <= eps3 | |
| eps3 = eps2/(4*L) | |
| # eps4 is defined on (II Section 3.6 equation (30) ) | |
| # each component of the formula (II Section 3.6 equation (29) ) | |
| # must be computed with error <= eps4 | |
| eps4 = eps3/(3*L) | |
| # COMPUTING M. NUMBER OF DERIVATIVES Fp[m] TO COMPUTE | |
| M = aux_M_Fp(ctx, A, eps4, a, B1, L) | |
| Fp = {} | |
| for n in range(M, 3*L-2): | |
| Fp[n] = 0 | |
| # But I have not seen an instance of M != 3*L-3 | |
| # | |
| # DETERMINATION OF J THE NUMBER OF TERMS NEEDED | |
| # IN THE TAYLOR SERIES OF F. | |
| # See II Section 3.11 equation (49)) | |
| h1 = eps4/(632*A) | |
| h2 = ctx.pi*ctx.pi*B1*a *ctx.sqrt(3)*math.e*math.e | |
| h2 = h1 * ctx.power((h2/M**2),(M-1)/3) / M | |
| h3 = min(h1,h2) | |
| J=12 | |
| jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) | |
| while jvalue > h3: | |
| J = J+1 | |
| jvalue = (2*ctx.pi)*jvalue/J | |
| # COMPUTING eps5[m] for 1 <= m <= 21 | |
| # See II Section 10 equation (43) | |
| eps5={} | |
| foreps5 = math.pi*math.pi*B1*a | |
| for m in range(0,22): | |
| aux1 = math.pow(foreps5, m/3)/(316.*A) | |
| aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) | |
| aux2 = math.sqrt(aux2) | |
| eps5[m] = aux1*aux2*eps4 | |
| # COMPUTING wpfp | |
| # See II Section 3.13 equation (59) | |
| twenty = min(3*L-3, 21)+1 | |
| aux = 6812*J | |
| wpfp = ctx.mag(44*J) | |
| for m in range(0, twenty): | |
| wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) | |
| # COMPUTING N AND p | |
| # See II Section | |
| ctx.prec = wpfp + ctx.mag(t) + 20 | |
| a = ctx.sqrt(t/(2*ctx.pi)) | |
| N = ctx.floor(a) | |
| p = 1-2*(a-N) | |
| # now we get a rounded version of p to the precision wpfp | |
| # this possibly is not necessary | |
| num = ctx.floor(p*(ctx.mpf(2)**wpfp)) | |
| difference = p * (ctx.mpf(2)**wpfp)-num | |
| if difference < 0.5: | |
| num = num | |
| else: | |
| num = num+1 | |
| p = ctx.convert(num * (ctx.mpf(2)**(-wpfp))) | |
| # COMPUTING THE COEFFICIENTS c[n] = cc[n] | |
| # We shall use the notation cc[n], since there is | |
| # a constant that is called c | |
| # See II Section 3.14 | |
| # We compute the coefficients and also save then in a | |
| # cache. The bulk of the computation is passed to | |
| # the function coef() | |
| # | |
| # eps6 is defined in II Section 3.13 equation (58) | |
| eps6 = ctx.power(2*ctx.pi, J)/(ctx.gamma(J+1)*3*J) | |
| # Now we compute the coefficients | |
| cc={} | |
| cont={} | |
| cont, pipowers = coef(ctx, J, eps6) | |
| cc = cont.copy() # we need a copy since we have | |
| Fp={} | |
| for n in range(M, 3*L-2): | |
| Fp[n] = 0 | |
| ctx.prec = wpfp | |
| for m in range(0,M+1): | |
| sumP = 0 | |
| for k in range(2*J-m-1,-1,-1): | |
| sumP = (sumP * p) + cc[k] | |
| Fp[m] = sumP | |
| # preparation of the new coefficients | |
| for k in range(0, 2*J-m-1): | |
| cc[k] = (k+1) * cc[k+1] | |
| # COMPUTING THE NUMBERS d[n,k] | |
| # See II Section 3.17 | |
| # First we compute the working precisions wpd[k] | |
| # Se II equation (92) | |
| wpd = {} | |
| d1 = max(6, ctx.mag(40*L*L)) | |
| d2 = 13+ctx.mag((1+abs(sigma))*A)-ctx.mag(eps4)-1 | |
| const = ctx.ln(8/(ctx.pi*ctx.pi*a*a*B1*B1)) /2 | |
| for n in range(0,L): | |
| d3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*const)+d2 | |
| wpd[n] = max(d3,d1) | |
| # procedure of II Section 3.17 | |
| ctx.prec = wpd[1]+10 | |
| psigma = 1-(2*sigma) | |
| d = {} | |
| d[0,0,-2]=0; d[0,0,-1]=0; d[0,0,0]=1; d[0,0,1]=0 | |
| d[0,-1,-2]=0; d[0,-1,-1]=0; d[0,-1,0]=1; d[0,-1,1]=0 | |
| for n in range(1,L): | |
| ctx.prec = wpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| m = 3*n-2*k | |
| if (m!=0): | |
| m1 = ctx.one/m | |
| c1 = m1/4 | |
| c2 = (psigma*m1)/2 | |
| c3 = -(m+1) | |
| d[0,n,k] = c3*d[0,n-1,k-2]+c1*d[0,n-1,k]+c2*d[0,n-1,k-1] | |
| else: | |
| d[0,n,k]=0 | |
| for r in range(0,k): | |
| add = d[0,n,r]*(ctx.one*ctx.fac(2*k-2*r)/ctx.fac(k-r)) | |
| d[0,n,k] -= ((-1)**(k-r))*add | |
| d[0,n,-2]=0; d[0,n,-1]=0; d[0,n,3*n//2+1]=0 | |
| for mu in range(-2,der+1): | |
| for n in range(-2,L): | |
| for k in range(-3,max(1,3*n//2+2)): | |
| if ((mu<0)or (n<0) or(k<0)or (k>3*n//2)): | |
| d[mu,n,k] = 0 | |
| for mu in range(1,der+1): | |
| for n in range(0,L): | |
| ctx.prec = wpd[n]+10 | |
| for k in range(0,3*n//2+1): | |
| aux=(2*mu-2)*d[mu-2,n-2,k-3]+2*(sigma+n-2)*d[mu-1,n-2,k-3] | |
| d[mu,n,k] = aux - d[mu-1,n-1,k-1] | |
| # COMPUTING THE COEFFICIENTS t[k,l] | |
| # See II Section 3.9 | |
| # | |
| # computing the needed wp | |
| wptcoef = {} | |
| wpterm = {} | |
| ctx.prec = 15 | |
| c1 = ctx.mag(40*(L+2)) | |
| c2 = ctx.mag(68*(L+2)*A) | |
| c4 = ctx.mag(B1*a*math.sqrt(ctx.pi))-1 | |
| for k in range(0,L): | |
| c3 = c2 - k*c4+ctx.mag(ctx.fac(k+0.5))/2. | |
| wptcoef[k] = max(c1,c3-ctx.mag(eps4)+1)+1 +10 | |
| wpterm[k] = max(c1,ctx.mag(L+2)+c3-ctx.mag(eps3)+1)+1 +10 | |
| # check of power of pi | |
| # computing the fortcoef[mu,k,ell] | |
| fortcoef={} | |
| for mu in derivatives: | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| fortcoef[mu,k,ell]=0 | |
| for mu in derivatives: | |
| for k in range(0,L): | |
| ctx.prec = wptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| fortcoef[mu,k,ell]=d[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] | |
| fortcoef[mu,k,ell]=fortcoef[mu,k,ell]/((2*ctx.j)**ell) | |
| def trunc_a(t): | |
| wp = ctx.prec | |
| ctx.prec = wp + 2 | |
| aa = ctx.sqrt(t/(2*ctx.pi)) | |
| ctx.prec = wp | |
| return aa | |
| # computing the tcoef[chi,k,ell] | |
| tcoef={} | |
| for chi in derivatives: | |
| for k in range(0,L): | |
| for ell in range(-2,3*k//2+1): | |
| tcoef[chi,k,ell]=0 | |
| ctx.prec = wptcoef[0]+3 | |
| aa = trunc_a(t) | |
| la = -ctx.ln(aa) | |
| for chi in derivatives: | |
| for k in range(0,L): | |
| ctx.prec = wptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| tcoef[chi,k,ell] = 0 | |
| for mu in range(0, chi+1): | |
| tcoefter = ctx.binomial(chi,mu) * la**mu * \ | |
| fortcoef[chi-mu,k,ell] | |
| tcoef[chi,k,ell] += tcoefter | |
| # COMPUTING tv[k,ell] | |
| # See II Section 3.8 | |
| # Computing the powers av[k] = a**(-k) | |
| ctx.prec = wptcoef[0] + 2 | |
| # a has a good value of a. | |
| # See II Section 3.6 | |
| av = {} | |
| av[0] = 1 | |
| av[1] = av[0]/a | |
| ctx.prec = wptcoef[0] | |
| for k in range(2,L): | |
| av[k] = av[k-1] * av[1] | |
| # Computing the quotients | |
| tv = {} | |
| for chi in derivatives: | |
| for k in range(0,L): | |
| ctx.prec = wptcoef[k] | |
| for ell in range(0,3*k//2+1): | |
| tv[chi,k,ell] = tcoef[chi,k,ell]* av[k] | |
| # COMPUTING THE TERMS term[k] | |
| # See II Section 3.6 | |
| term = {} | |
| for chi in derivatives: | |
| for n in range(0,L): | |
| ctx.prec = wpterm[n] | |
| te = 0 | |
| for k in range(0, 3*n//2+1): | |
| te += tv[chi,n,k] | |
| term[chi,n] = te | |
| # COMPUTING rssum | |
| # See II Section 3.5 | |
| rssum={} | |
| ctx.prec=15 | |
| rsbound = math.sqrt(ctx.pi) * c /(b*a) | |
| ctx.prec=15 | |
| wprssum = ctx.mag(4.4*((L+3)**2)*rsbound / eps2) | |
| wprssum = max(wprssum, ctx.mag(10*(L+1))) | |
| ctx.prec = wprssum | |
| for chi in derivatives: | |
| rssum[chi] = 0 | |
| for k in range(1,L+1): | |
| rssum[chi] += term[chi,L-k] | |
| # COMPUTING S3 | |
| # See II Section 3.19 | |
| ctx.prec = 15 | |
| A2 = 2**(ctx.mag(rssum[0])) | |
| eps8 = eps/(3* A2) | |
| T = t * ctx.ln(t/(2*ctx.pi)) | |
| wps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-sigma))*T) | |
| ctx.prec = wps3 | |
| tpi = t/(2*ctx.pi) | |
| arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 | |
| U = ctx.expj(-arg) | |
| a = trunc_a(t) | |
| asigma = ctx.power(a, -sigma) | |
| S3 = ((-1)**(N-1)) * asigma * U | |
| # COMPUTING S1 the zetasum | |
| # See II Section 3.18 | |
| ctx.prec = 15 | |
| wpsum = 4 + ctx.mag((N+ctx.power(N,1-sigma))*ctx.ln(N)/eps1) | |
| ctx.prec = wpsum + 10 | |
| ''' | |
| # This can be improved | |
| S1 = {} | |
| for chi in derivatives: | |
| S1[chi] = 0 | |
| for n in range(1,int(N)+1): | |
| ln = ctx.ln(n) | |
| expn = ctx.exp(-ln*(sigma+ctx.j*t)) | |
| for chi in derivatives: | |
| term = ctx.power(-ln, chi)*expn | |
| S1[chi] += term | |
| ''' | |
| S1 = ctx._zetasum(s, 1, int(N)-1, derivatives)[0] | |
| # END OF COMPUTATION | |
| # See II Section 3.1 | |
| ctx.prec = 15 | |
| absS1 = abs(S1[der]) | |
| absS2 = abs(rssum[der] * S3) | |
| wpend = max(6, wpinitial + ctx.mag(6*(3*absS1+7*absS2))) | |
| ctx.prec = wpend | |
| rz = {} | |
| for chi in derivatives: | |
| rz[chi] = S1[chi]+rssum[chi]*S3 | |
| ctx.prec = wpinitial | |
| return rz | |
| def z_half(ctx,t,der=0): | |
| r""" | |
| z_half(t,der=0) Computes Z^(der)(t) | |
| """ | |
| s=ctx.mpf('0.5')+ctx.j*t | |
| wpinitial = ctx.prec | |
| ctx.prec = 15 | |
| tt = t/(2*ctx.pi) | |
| wptheta = wpinitial +1 + ctx.mag(3*(tt**1.5)*ctx.ln(tt)) | |
| wpz = wpinitial + 1 + ctx.mag(12*tt*ctx.ln(tt)) | |
| ctx.prec = wptheta | |
| theta = ctx.siegeltheta(t) | |
| ctx.prec = wpz | |
| rz = Rzeta_set(ctx,s, range(der+1)) | |
| if der > 0: ps1 = ctx._re(ctx.psi(0,s/2)/2 - ctx.ln(ctx.pi)/2) | |
| if der > 1: ps2 = ctx._re(ctx.j*ctx.psi(1,s/2)/4) | |
| if der > 2: ps3 = ctx._re(-ctx.psi(2,s/2)/8) | |
| if der > 3: ps4 = ctx._re(-ctx.j*ctx.psi(3,s/2)/16) | |
| exptheta = ctx.expj(theta) | |
| if der == 0: | |
| z = 2*exptheta*rz[0] | |
| if der == 1: | |
| zf = 2j*exptheta | |
| z = zf*(ps1*rz[0]+rz[1]) | |
| if der == 2: | |
| zf = 2 * exptheta | |
| z = -zf*(2*rz[1]*ps1+rz[0]*ps1**2+rz[2]-ctx.j*rz[0]*ps2) | |
| if der == 3: | |
| zf = -2j*exptheta | |
| z = 3*rz[1]*ps1**2+rz[0]*ps1**3+3*ps1*rz[2] | |
| z = zf*(z-3j*rz[1]*ps2-3j*rz[0]*ps1*ps2+rz[3]-rz[0]*ps3) | |
| if der == 4: | |
| zf = 2*exptheta | |
| z = 4*rz[1]*ps1**3+rz[0]*ps1**4+6*ps1**2*rz[2] | |
| z = z-12j*rz[1]*ps1*ps2-6j*rz[0]*ps1**2*ps2-6j*rz[2]*ps2-3*rz[0]*ps2*ps2 | |
| z = z + 4*ps1*rz[3]-4*rz[1]*ps3-4*rz[0]*ps1*ps3+rz[4]+ctx.j*rz[0]*ps4 | |
| z = zf*z | |
| ctx.prec = wpinitial | |
| return ctx._re(z) | |
| def zeta_half(ctx, s, k=0): | |
| """ | |
| zeta_half(s,k=0) Computes zeta^(k)(s) when Re s = 0.5 | |
| """ | |
| wpinitial = ctx.prec | |
| sigma = ctx._re(s) | |
| t = ctx._im(s) | |
| #--- compute wptheta, wpR, wpbasic --- | |
| ctx.prec = 53 | |
| # X see II Section 3.21 (109) and (110) | |
| if sigma > 0: | |
| X = ctx.sqrt(abs(s)) | |
| else: | |
| X = (2*ctx.pi)**(sigma-1) * abs(1-s)**(0.5-sigma) | |
| # M1 see II Section 3.21 (111) and (112) | |
| if sigma > 0: | |
| M1 = 2*ctx.sqrt(t/(2*ctx.pi)) | |
| else: | |
| M1 = 4 * t * X | |
| # T see II Section 3.21 (113) | |
| abst = abs(0.5-s) | |
| T = 2* abst*math.log(abst) | |
| # computing wpbasic, wptheta, wpR see II Section 3.21 | |
| wpbasic = max(6,3+ctx.mag(t)) | |
| wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M1*X+1.3*M1*X*T)+wpinitial+1 | |
| wpbasic = max(wpbasic, wpbasic2) | |
| wptheta = max(4, 3+ctx.mag(2.7*M1*X)+wpinitial+1) | |
| wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 | |
| ctx.prec = wptheta | |
| theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) | |
| if k > 0: ps1 = (ctx._re(ctx.psi(0,s/2)))/2 - ctx.ln(ctx.pi)/2 | |
| if k > 1: ps2 = -(ctx._im(ctx.psi(1,s/2)))/4 | |
| if k > 2: ps3 = -(ctx._re(ctx.psi(2,s/2)))/8 | |
| if k > 3: ps4 = (ctx._im(ctx.psi(3,s/2)))/16 | |
| ctx.prec = wpR | |
| xrz = Rzeta_set(ctx,s,range(k+1)) | |
| yrz={} | |
| for chi in range(0,k+1): | |
| yrz[chi] = ctx.conj(xrz[chi]) | |
| ctx.prec = wpbasic | |
| exptheta = ctx.expj(-2*theta) | |
| if k==0: | |
| zv = xrz[0]+exptheta*yrz[0] | |
| if k==1: | |
| zv1 = -yrz[1] - 2*yrz[0]*ps1 | |
| zv = xrz[1] + exptheta*zv1 | |
| if k==2: | |
| zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2)+yrz[2]+2j*yrz[0]*ps2 | |
| zv = xrz[2]+exptheta*zv1 | |
| if k==3: | |
| zv1 = -12*yrz[1]*ps1**2-8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 | |
| zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 | |
| zv = xrz[3]+exptheta*zv1 | |
| if k == 4: | |
| zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 | |
| zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 | |
| zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 | |
| zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 | |
| zv = xrz[4]+exptheta*zv1 | |
| ctx.prec = wpinitial | |
| return zv | |
| def zeta_offline(ctx, s, k=0): | |
| """ | |
| Computes zeta^(k)(s) off the line | |
| """ | |
| wpinitial = ctx.prec | |
| sigma = ctx._re(s) | |
| t = ctx._im(s) | |
| #--- compute wptheta, wpR, wpbasic --- | |
| ctx.prec = 53 | |
| # X see II Section 3.21 (109) and (110) | |
| if sigma > 0: | |
| X = ctx.power(abs(s), 0.5) | |
| else: | |
| X = ctx.power(2*ctx.pi, sigma-1)*ctx.power(abs(1-s),0.5-sigma) | |
| # M1 see II Section 3.21 (111) and (112) | |
| if (sigma > 0): | |
| M1 = 2*ctx.sqrt(t/(2*ctx.pi)) | |
| else: | |
| M1 = 4 * t * X | |
| # M2 see II Section 3.21 (111) and (112) | |
| if (1-sigma > 0): | |
| M2 = 2*ctx.sqrt(t/(2*ctx.pi)) | |
| else: | |
| M2 = 4*t*ctx.power(2*ctx.pi, -sigma)*ctx.power(abs(s),sigma-0.5) | |
| # T see II Section 3.21 (113) | |
| abst = abs(0.5-s) | |
| T = 2* abst*math.log(abst) | |
| # computing wpbasic, wptheta, wpR see II Section 3.21 | |
| wpbasic = max(6,3+ctx.mag(t)) | |
| wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M2*X+1.3*M2*X*T)+wpinitial+1 | |
| wpbasic = max(wpbasic, wpbasic2) | |
| wptheta = max(4, 3+ctx.mag(2.7*M2*X)+wpinitial+1) | |
| wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 | |
| ctx.prec = wptheta | |
| theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) | |
| s1 = s | |
| s2 = ctx.conj(1-s1) | |
| ctx.prec = wpR | |
| xrz, yrz = Rzeta_simul(ctx, s, k) | |
| if k > 0: ps1 = (ctx.psi(0,s1/2)+ctx.psi(0,(1-s1)/2))/4 - ctx.ln(ctx.pi)/2 | |
| if k > 1: ps2 = ctx.j*(ctx.psi(1,s1/2)-ctx.psi(1,(1-s1)/2))/8 | |
| if k > 2: ps3 = -(ctx.psi(2,s1/2)+ctx.psi(2,(1-s1)/2))/16 | |
| if k > 3: ps4 = -ctx.j*(ctx.psi(3,s1/2)-ctx.psi(3,(1-s1)/2))/32 | |
| ctx.prec = wpbasic | |
| exptheta = ctx.expj(-2*theta) | |
| if k == 0: | |
| zv = xrz[0]+exptheta*yrz[0] | |
| if k == 1: | |
| zv1 = -yrz[1]-2*yrz[0]*ps1 | |
| zv = xrz[1]+exptheta*zv1 | |
| if k == 2: | |
| zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2) +yrz[2]+2j*yrz[0]*ps2 | |
| zv = xrz[2]+exptheta*zv1 | |
| if k == 3: | |
| zv1 = -12*yrz[1]*ps1**2 -8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 | |
| zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 | |
| zv = xrz[3]+exptheta*zv1 | |
| if k == 4: | |
| zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 | |
| zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 | |
| zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 | |
| zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 | |
| zv = xrz[4]+exptheta*zv1 | |
| ctx.prec = wpinitial | |
| return zv | |
| def z_offline(ctx, w, k=0): | |
| r""" | |
| Computes Z(w) and its derivatives off the line | |
| """ | |
| s = ctx.mpf('0.5')+ctx.j*w | |
| s1 = s | |
| s2 = ctx.conj(1-s1) | |
| wpinitial = ctx.prec | |
| ctx.prec = 35 | |
| # X see II Section 3.21 (109) and (110) | |
| # M1 see II Section 3.21 (111) and (112) | |
| if (ctx._re(s1) >= 0): | |
| M1 = 2*ctx.sqrt(ctx._im(s1)/(2 * ctx.pi)) | |
| X = ctx.sqrt(abs(s1)) | |
| else: | |
| X = (2*ctx.pi)**(ctx._re(s1)-1) * abs(1-s1)**(0.5-ctx._re(s1)) | |
| M1 = 4 * ctx._im(s1)*X | |
| # M2 see II Section 3.21 (111) and (112) | |
| if (ctx._re(s2) >= 0): | |
| M2 = 2*ctx.sqrt(ctx._im(s2)/(2 * ctx.pi)) | |
| else: | |
| M2 = 4 * ctx._im(s2)*(2*ctx.pi)**(ctx._re(s2)-1)*abs(1-s2)**(0.5-ctx._re(s2)) | |
| # T see II Section 3.21 Prop. 27 | |
| T = 2*abs(ctx.siegeltheta(w)) | |
| # defining some precisions | |
| # see II Section 3.22 (115), (116), (117) | |
| aux1 = ctx.sqrt(X) | |
| aux2 = aux1*(M1+M2) | |
| aux3 = 3 +wpinitial | |
| wpbasic = max(6, 3+ctx.mag(T), ctx.mag(aux2*(26+2*T))+aux3) | |
| wptheta = max(4,ctx.mag(2.04*aux2)+aux3) | |
| wpR = ctx.mag(4*aux1)+aux3 | |
| # now the computations | |
| ctx.prec = wptheta | |
| theta = ctx.siegeltheta(w) | |
| ctx.prec = wpR | |
| xrz, yrz = Rzeta_simul(ctx,s,k) | |
| pta = 0.25 + 0.5j*w | |
| ptb = 0.25 - 0.5j*w | |
| if k > 0: ps1 = 0.25*(ctx.psi(0,pta)+ctx.psi(0,ptb)) - ctx.ln(ctx.pi)/2 | |
| if k > 1: ps2 = (1j/8)*(ctx.psi(1,pta)-ctx.psi(1,ptb)) | |
| if k > 2: ps3 = (-1./16)*(ctx.psi(2,pta)+ctx.psi(2,ptb)) | |
| if k > 3: ps4 = (-1j/32)*(ctx.psi(3,pta)-ctx.psi(3,ptb)) | |
| ctx.prec = wpbasic | |
| exptheta = ctx.expj(theta) | |
| if k == 0: | |
| zv = exptheta*xrz[0]+yrz[0]/exptheta | |
| j = ctx.j | |
| if k == 1: | |
| zv = j*exptheta*(xrz[1]+xrz[0]*ps1)-j*(yrz[1]+yrz[0]*ps1)/exptheta | |
| if k == 2: | |
| zv = exptheta*(-2*xrz[1]*ps1-xrz[0]*ps1**2-xrz[2]+j*xrz[0]*ps2) | |
| zv =zv + (-2*yrz[1]*ps1-yrz[0]*ps1**2-yrz[2]-j*yrz[0]*ps2)/exptheta | |
| if k == 3: | |
| zv1 = -3*xrz[1]*ps1**2-xrz[0]*ps1**3-3*xrz[2]*ps1+j*3*xrz[1]*ps2 | |
| zv1 = (zv1+ 3j*xrz[0]*ps1*ps2-xrz[3]+xrz[0]*ps3)*j*exptheta | |
| zv2 = 3*yrz[1]*ps1**2+yrz[0]*ps1**3+3*yrz[2]*ps1+j*3*yrz[1]*ps2 | |
| zv2 = j*(zv2 + 3j*yrz[0]*ps1*ps2+ yrz[3]-yrz[0]*ps3)/exptheta | |
| zv = zv1+zv2 | |
| if k == 4: | |
| zv1 = 4*xrz[1]*ps1**3+xrz[0]*ps1**4 + 6*xrz[2]*ps1**2 | |
| zv1 = zv1-12j*xrz[1]*ps1*ps2-6j*xrz[0]*ps1**2*ps2-6j*xrz[2]*ps2 | |
| zv1 = zv1-3*xrz[0]*ps2*ps2+4*xrz[3]*ps1-4*xrz[1]*ps3-4*xrz[0]*ps1*ps3 | |
| zv1 = zv1+xrz[4]+j*xrz[0]*ps4 | |
| zv2 = 4*yrz[1]*ps1**3+yrz[0]*ps1**4 + 6*yrz[2]*ps1**2 | |
| zv2 = zv2+12j*yrz[1]*ps1*ps2+6j*yrz[0]*ps1**2*ps2+6j*yrz[2]*ps2 | |
| zv2 = zv2-3*yrz[0]*ps2*ps2+4*yrz[3]*ps1-4*yrz[1]*ps3-4*yrz[0]*ps1*ps3 | |
| zv2 = zv2+yrz[4]-j*yrz[0]*ps4 | |
| zv = exptheta*zv1+zv2/exptheta | |
| ctx.prec = wpinitial | |
| return zv | |
| def rs_zeta(ctx, s, derivative=0, **kwargs): | |
| if derivative > 4: | |
| raise NotImplementedError | |
| s = ctx.convert(s) | |
| re = ctx._re(s); im = ctx._im(s) | |
| if im < 0: | |
| z = ctx.conj(ctx.rs_zeta(ctx.conj(s), derivative)) | |
| return z | |
| critical_line = (re == 0.5) | |
| if critical_line: | |
| return zeta_half(ctx, s, derivative) | |
| else: | |
| return zeta_offline(ctx, s, derivative) | |
| def rs_z(ctx, w, derivative=0): | |
| w = ctx.convert(w) | |
| re = ctx._re(w); im = ctx._im(w) | |
| if re < 0: | |
| return rs_z(ctx, -w, derivative) | |
| critical_line = (im == 0) | |
| if critical_line : | |
| return z_half(ctx, w, derivative) | |
| else: | |
| return z_offline(ctx, w, derivative) | |