Spaces:
Sleeping
Sleeping
| """ Basic functions for manipulating 2d arrays | |
| """ | |
| import functools | |
| from numpy.core.numeric import ( | |
| asanyarray, arange, zeros, greater_equal, multiply, ones, | |
| asarray, where, int8, int16, int32, int64, intp, empty, promote_types, | |
| diagonal, nonzero, indices | |
| ) | |
| from numpy.core.overrides import set_array_function_like_doc, set_module | |
| from numpy.core import overrides | |
| from numpy.core import iinfo | |
| from numpy.lib.stride_tricks import broadcast_to | |
| __all__ = [ | |
| 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', | |
| 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', | |
| 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] | |
| array_function_dispatch = functools.partial( | |
| overrides.array_function_dispatch, module='numpy') | |
| i1 = iinfo(int8) | |
| i2 = iinfo(int16) | |
| i4 = iinfo(int32) | |
| def _min_int(low, high): | |
| """ get small int that fits the range """ | |
| if high <= i1.max and low >= i1.min: | |
| return int8 | |
| if high <= i2.max and low >= i2.min: | |
| return int16 | |
| if high <= i4.max and low >= i4.min: | |
| return int32 | |
| return int64 | |
| def _flip_dispatcher(m): | |
| return (m,) | |
| def fliplr(m): | |
| """ | |
| Reverse the order of elements along axis 1 (left/right). | |
| For a 2-D array, this flips the entries in each row in the left/right | |
| direction. Columns are preserved, but appear in a different order than | |
| before. | |
| Parameters | |
| ---------- | |
| m : array_like | |
| Input array, must be at least 2-D. | |
| Returns | |
| ------- | |
| f : ndarray | |
| A view of `m` with the columns reversed. Since a view | |
| is returned, this operation is :math:`\\mathcal O(1)`. | |
| See Also | |
| -------- | |
| flipud : Flip array in the up/down direction. | |
| flip : Flip array in one or more dimesions. | |
| rot90 : Rotate array counterclockwise. | |
| Notes | |
| ----- | |
| Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``. | |
| Requires the array to be at least 2-D. | |
| Examples | |
| -------- | |
| >>> A = np.diag([1.,2.,3.]) | |
| >>> A | |
| array([[1., 0., 0.], | |
| [0., 2., 0.], | |
| [0., 0., 3.]]) | |
| >>> np.fliplr(A) | |
| array([[0., 0., 1.], | |
| [0., 2., 0.], | |
| [3., 0., 0.]]) | |
| >>> A = np.random.randn(2,3,5) | |
| >>> np.all(np.fliplr(A) == A[:,::-1,...]) | |
| True | |
| """ | |
| m = asanyarray(m) | |
| if m.ndim < 2: | |
| raise ValueError("Input must be >= 2-d.") | |
| return m[:, ::-1] | |
| def flipud(m): | |
| """ | |
| Reverse the order of elements along axis 0 (up/down). | |
| For a 2-D array, this flips the entries in each column in the up/down | |
| direction. Rows are preserved, but appear in a different order than before. | |
| Parameters | |
| ---------- | |
| m : array_like | |
| Input array. | |
| Returns | |
| ------- | |
| out : array_like | |
| A view of `m` with the rows reversed. Since a view is | |
| returned, this operation is :math:`\\mathcal O(1)`. | |
| See Also | |
| -------- | |
| fliplr : Flip array in the left/right direction. | |
| flip : Flip array in one or more dimesions. | |
| rot90 : Rotate array counterclockwise. | |
| Notes | |
| ----- | |
| Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``. | |
| Requires the array to be at least 1-D. | |
| Examples | |
| -------- | |
| >>> A = np.diag([1.0, 2, 3]) | |
| >>> A | |
| array([[1., 0., 0.], | |
| [0., 2., 0.], | |
| [0., 0., 3.]]) | |
| >>> np.flipud(A) | |
| array([[0., 0., 3.], | |
| [0., 2., 0.], | |
| [1., 0., 0.]]) | |
| >>> A = np.random.randn(2,3,5) | |
| >>> np.all(np.flipud(A) == A[::-1,...]) | |
| True | |
| >>> np.flipud([1,2]) | |
| array([2, 1]) | |
| """ | |
| m = asanyarray(m) | |
| if m.ndim < 1: | |
| raise ValueError("Input must be >= 1-d.") | |
| return m[::-1, ...] | |
| def _eye_dispatcher(N, M=None, k=None, dtype=None, order=None, *, like=None): | |
| return (like,) | |
| def eye(N, M=None, k=0, dtype=float, order='C', *, like=None): | |
| """ | |
| Return a 2-D array with ones on the diagonal and zeros elsewhere. | |
| Parameters | |
| ---------- | |
| N : int | |
| Number of rows in the output. | |
| M : int, optional | |
| Number of columns in the output. If None, defaults to `N`. | |
| k : int, optional | |
| Index of the diagonal: 0 (the default) refers to the main diagonal, | |
| a positive value refers to an upper diagonal, and a negative value | |
| to a lower diagonal. | |
| dtype : data-type, optional | |
| Data-type of the returned array. | |
| order : {'C', 'F'}, optional | |
| Whether the output should be stored in row-major (C-style) or | |
| column-major (Fortran-style) order in memory. | |
| .. versionadded:: 1.14.0 | |
| ${ARRAY_FUNCTION_LIKE} | |
| .. versionadded:: 1.20.0 | |
| Returns | |
| ------- | |
| I : ndarray of shape (N,M) | |
| An array where all elements are equal to zero, except for the `k`-th | |
| diagonal, whose values are equal to one. | |
| See Also | |
| -------- | |
| identity : (almost) equivalent function | |
| diag : diagonal 2-D array from a 1-D array specified by the user. | |
| Examples | |
| -------- | |
| >>> np.eye(2, dtype=int) | |
| array([[1, 0], | |
| [0, 1]]) | |
| >>> np.eye(3, k=1) | |
| array([[0., 1., 0.], | |
| [0., 0., 1.], | |
| [0., 0., 0.]]) | |
| """ | |
| if like is not None: | |
| return _eye_with_like(N, M=M, k=k, dtype=dtype, order=order, like=like) | |
| if M is None: | |
| M = N | |
| m = zeros((N, M), dtype=dtype, order=order) | |
| if k >= M: | |
| return m | |
| if k >= 0: | |
| i = k | |
| else: | |
| i = (-k) * M | |
| m[:M-k].flat[i::M+1] = 1 | |
| return m | |
| _eye_with_like = array_function_dispatch( | |
| _eye_dispatcher | |
| )(eye) | |
| def _diag_dispatcher(v, k=None): | |
| return (v,) | |
| def diag(v, k=0): | |
| """ | |
| Extract a diagonal or construct a diagonal array. | |
| See the more detailed documentation for ``numpy.diagonal`` if you use this | |
| function to extract a diagonal and wish to write to the resulting array; | |
| whether it returns a copy or a view depends on what version of numpy you | |
| are using. | |
| Parameters | |
| ---------- | |
| v : array_like | |
| If `v` is a 2-D array, return a copy of its `k`-th diagonal. | |
| If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th | |
| diagonal. | |
| k : int, optional | |
| Diagonal in question. The default is 0. Use `k>0` for diagonals | |
| above the main diagonal, and `k<0` for diagonals below the main | |
| diagonal. | |
| Returns | |
| ------- | |
| out : ndarray | |
| The extracted diagonal or constructed diagonal array. | |
| See Also | |
| -------- | |
| diagonal : Return specified diagonals. | |
| diagflat : Create a 2-D array with the flattened input as a diagonal. | |
| trace : Sum along diagonals. | |
| triu : Upper triangle of an array. | |
| tril : Lower triangle of an array. | |
| Examples | |
| -------- | |
| >>> x = np.arange(9).reshape((3,3)) | |
| >>> x | |
| array([[0, 1, 2], | |
| [3, 4, 5], | |
| [6, 7, 8]]) | |
| >>> np.diag(x) | |
| array([0, 4, 8]) | |
| >>> np.diag(x, k=1) | |
| array([1, 5]) | |
| >>> np.diag(x, k=-1) | |
| array([3, 7]) | |
| >>> np.diag(np.diag(x)) | |
| array([[0, 0, 0], | |
| [0, 4, 0], | |
| [0, 0, 8]]) | |
| """ | |
| v = asanyarray(v) | |
| s = v.shape | |
| if len(s) == 1: | |
| n = s[0]+abs(k) | |
| res = zeros((n, n), v.dtype) | |
| if k >= 0: | |
| i = k | |
| else: | |
| i = (-k) * n | |
| res[:n-k].flat[i::n+1] = v | |
| return res | |
| elif len(s) == 2: | |
| return diagonal(v, k) | |
| else: | |
| raise ValueError("Input must be 1- or 2-d.") | |
| def diagflat(v, k=0): | |
| """ | |
| Create a two-dimensional array with the flattened input as a diagonal. | |
| Parameters | |
| ---------- | |
| v : array_like | |
| Input data, which is flattened and set as the `k`-th | |
| diagonal of the output. | |
| k : int, optional | |
| Diagonal to set; 0, the default, corresponds to the "main" diagonal, | |
| a positive (negative) `k` giving the number of the diagonal above | |
| (below) the main. | |
| Returns | |
| ------- | |
| out : ndarray | |
| The 2-D output array. | |
| See Also | |
| -------- | |
| diag : MATLAB work-alike for 1-D and 2-D arrays. | |
| diagonal : Return specified diagonals. | |
| trace : Sum along diagonals. | |
| Examples | |
| -------- | |
| >>> np.diagflat([[1,2], [3,4]]) | |
| array([[1, 0, 0, 0], | |
| [0, 2, 0, 0], | |
| [0, 0, 3, 0], | |
| [0, 0, 0, 4]]) | |
| >>> np.diagflat([1,2], 1) | |
| array([[0, 1, 0], | |
| [0, 0, 2], | |
| [0, 0, 0]]) | |
| """ | |
| try: | |
| wrap = v.__array_wrap__ | |
| except AttributeError: | |
| wrap = None | |
| v = asarray(v).ravel() | |
| s = len(v) | |
| n = s + abs(k) | |
| res = zeros((n, n), v.dtype) | |
| if (k >= 0): | |
| i = arange(0, n-k, dtype=intp) | |
| fi = i+k+i*n | |
| else: | |
| i = arange(0, n+k, dtype=intp) | |
| fi = i+(i-k)*n | |
| res.flat[fi] = v | |
| if not wrap: | |
| return res | |
| return wrap(res) | |
| def _tri_dispatcher(N, M=None, k=None, dtype=None, *, like=None): | |
| return (like,) | |
| def tri(N, M=None, k=0, dtype=float, *, like=None): | |
| """ | |
| An array with ones at and below the given diagonal and zeros elsewhere. | |
| Parameters | |
| ---------- | |
| N : int | |
| Number of rows in the array. | |
| M : int, optional | |
| Number of columns in the array. | |
| By default, `M` is taken equal to `N`. | |
| k : int, optional | |
| The sub-diagonal at and below which the array is filled. | |
| `k` = 0 is the main diagonal, while `k` < 0 is below it, | |
| and `k` > 0 is above. The default is 0. | |
| dtype : dtype, optional | |
| Data type of the returned array. The default is float. | |
| ${ARRAY_FUNCTION_LIKE} | |
| .. versionadded:: 1.20.0 | |
| Returns | |
| ------- | |
| tri : ndarray of shape (N, M) | |
| Array with its lower triangle filled with ones and zero elsewhere; | |
| in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise. | |
| Examples | |
| -------- | |
| >>> np.tri(3, 5, 2, dtype=int) | |
| array([[1, 1, 1, 0, 0], | |
| [1, 1, 1, 1, 0], | |
| [1, 1, 1, 1, 1]]) | |
| >>> np.tri(3, 5, -1) | |
| array([[0., 0., 0., 0., 0.], | |
| [1., 0., 0., 0., 0.], | |
| [1., 1., 0., 0., 0.]]) | |
| """ | |
| if like is not None: | |
| return _tri_with_like(N, M=M, k=k, dtype=dtype, like=like) | |
| if M is None: | |
| M = N | |
| m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), | |
| arange(-k, M-k, dtype=_min_int(-k, M - k))) | |
| # Avoid making a copy if the requested type is already bool | |
| m = m.astype(dtype, copy=False) | |
| return m | |
| _tri_with_like = array_function_dispatch( | |
| _tri_dispatcher | |
| )(tri) | |
| def _trilu_dispatcher(m, k=None): | |
| return (m,) | |
| def tril(m, k=0): | |
| """ | |
| Lower triangle of an array. | |
| Return a copy of an array with elements above the `k`-th diagonal zeroed. | |
| Parameters | |
| ---------- | |
| m : array_like, shape (M, N) | |
| Input array. | |
| k : int, optional | |
| Diagonal above which to zero elements. `k = 0` (the default) is the | |
| main diagonal, `k < 0` is below it and `k > 0` is above. | |
| Returns | |
| ------- | |
| tril : ndarray, shape (M, N) | |
| Lower triangle of `m`, of same shape and data-type as `m`. | |
| See Also | |
| -------- | |
| triu : same thing, only for the upper triangle | |
| Examples | |
| -------- | |
| >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) | |
| array([[ 0, 0, 0], | |
| [ 4, 0, 0], | |
| [ 7, 8, 0], | |
| [10, 11, 12]]) | |
| """ | |
| m = asanyarray(m) | |
| mask = tri(*m.shape[-2:], k=k, dtype=bool) | |
| return where(mask, m, zeros(1, m.dtype)) | |
| def triu(m, k=0): | |
| """ | |
| Upper triangle of an array. | |
| Return a copy of an array with the elements below the `k`-th diagonal | |
| zeroed. | |
| Please refer to the documentation for `tril` for further details. | |
| See Also | |
| -------- | |
| tril : lower triangle of an array | |
| Examples | |
| -------- | |
| >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) | |
| array([[ 1, 2, 3], | |
| [ 4, 5, 6], | |
| [ 0, 8, 9], | |
| [ 0, 0, 12]]) | |
| """ | |
| m = asanyarray(m) | |
| mask = tri(*m.shape[-2:], k=k-1, dtype=bool) | |
| return where(mask, zeros(1, m.dtype), m) | |
| def _vander_dispatcher(x, N=None, increasing=None): | |
| return (x,) | |
| # Originally borrowed from John Hunter and matplotlib | |
| def vander(x, N=None, increasing=False): | |
| """ | |
| Generate a Vandermonde matrix. | |
| The columns of the output matrix are powers of the input vector. The | |
| order of the powers is determined by the `increasing` boolean argument. | |
| Specifically, when `increasing` is False, the `i`-th output column is | |
| the input vector raised element-wise to the power of ``N - i - 1``. Such | |
| a matrix with a geometric progression in each row is named for Alexandre- | |
| Theophile Vandermonde. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| 1-D input array. | |
| N : int, optional | |
| Number of columns in the output. If `N` is not specified, a square | |
| array is returned (``N = len(x)``). | |
| increasing : bool, optional | |
| Order of the powers of the columns. If True, the powers increase | |
| from left to right, if False (the default) they are reversed. | |
| .. versionadded:: 1.9.0 | |
| Returns | |
| ------- | |
| out : ndarray | |
| Vandermonde matrix. If `increasing` is False, the first column is | |
| ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is | |
| True, the columns are ``x^0, x^1, ..., x^(N-1)``. | |
| See Also | |
| -------- | |
| polynomial.polynomial.polyvander | |
| Examples | |
| -------- | |
| >>> x = np.array([1, 2, 3, 5]) | |
| >>> N = 3 | |
| >>> np.vander(x, N) | |
| array([[ 1, 1, 1], | |
| [ 4, 2, 1], | |
| [ 9, 3, 1], | |
| [25, 5, 1]]) | |
| >>> np.column_stack([x**(N-1-i) for i in range(N)]) | |
| array([[ 1, 1, 1], | |
| [ 4, 2, 1], | |
| [ 9, 3, 1], | |
| [25, 5, 1]]) | |
| >>> x = np.array([1, 2, 3, 5]) | |
| >>> np.vander(x) | |
| array([[ 1, 1, 1, 1], | |
| [ 8, 4, 2, 1], | |
| [ 27, 9, 3, 1], | |
| [125, 25, 5, 1]]) | |
| >>> np.vander(x, increasing=True) | |
| array([[ 1, 1, 1, 1], | |
| [ 1, 2, 4, 8], | |
| [ 1, 3, 9, 27], | |
| [ 1, 5, 25, 125]]) | |
| The determinant of a square Vandermonde matrix is the product | |
| of the differences between the values of the input vector: | |
| >>> np.linalg.det(np.vander(x)) | |
| 48.000000000000043 # may vary | |
| >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) | |
| 48 | |
| """ | |
| x = asarray(x) | |
| if x.ndim != 1: | |
| raise ValueError("x must be a one-dimensional array or sequence.") | |
| if N is None: | |
| N = len(x) | |
| v = empty((len(x), N), dtype=promote_types(x.dtype, int)) | |
| tmp = v[:, ::-1] if not increasing else v | |
| if N > 0: | |
| tmp[:, 0] = 1 | |
| if N > 1: | |
| tmp[:, 1:] = x[:, None] | |
| multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) | |
| return v | |
| def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, | |
| weights=None, density=None): | |
| yield x | |
| yield y | |
| # This terrible logic is adapted from the checks in histogram2d | |
| try: | |
| N = len(bins) | |
| except TypeError: | |
| N = 1 | |
| if N == 2: | |
| yield from bins # bins=[x, y] | |
| else: | |
| yield bins | |
| yield weights | |
| def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, | |
| density=None): | |
| """ | |
| Compute the bi-dimensional histogram of two data samples. | |
| Parameters | |
| ---------- | |
| x : array_like, shape (N,) | |
| An array containing the x coordinates of the points to be | |
| histogrammed. | |
| y : array_like, shape (N,) | |
| An array containing the y coordinates of the points to be | |
| histogrammed. | |
| bins : int or array_like or [int, int] or [array, array], optional | |
| The bin specification: | |
| * If int, the number of bins for the two dimensions (nx=ny=bins). | |
| * If array_like, the bin edges for the two dimensions | |
| (x_edges=y_edges=bins). | |
| * If [int, int], the number of bins in each dimension | |
| (nx, ny = bins). | |
| * If [array, array], the bin edges in each dimension | |
| (x_edges, y_edges = bins). | |
| * A combination [int, array] or [array, int], where int | |
| is the number of bins and array is the bin edges. | |
| range : array_like, shape(2,2), optional | |
| The leftmost and rightmost edges of the bins along each dimension | |
| (if not specified explicitly in the `bins` parameters): | |
| ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range | |
| will be considered outliers and not tallied in the histogram. | |
| density : bool, optional | |
| If False, the default, returns the number of samples in each bin. | |
| If True, returns the probability *density* function at the bin, | |
| ``bin_count / sample_count / bin_area``. | |
| normed : bool, optional | |
| An alias for the density argument that behaves identically. To avoid | |
| confusion with the broken normed argument to `histogram`, `density` | |
| should be preferred. | |
| weights : array_like, shape(N,), optional | |
| An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. | |
| Weights are normalized to 1 if `normed` is True. If `normed` is | |
| False, the values of the returned histogram are equal to the sum of | |
| the weights belonging to the samples falling into each bin. | |
| Returns | |
| ------- | |
| H : ndarray, shape(nx, ny) | |
| The bi-dimensional histogram of samples `x` and `y`. Values in `x` | |
| are histogrammed along the first dimension and values in `y` are | |
| histogrammed along the second dimension. | |
| xedges : ndarray, shape(nx+1,) | |
| The bin edges along the first dimension. | |
| yedges : ndarray, shape(ny+1,) | |
| The bin edges along the second dimension. | |
| See Also | |
| -------- | |
| histogram : 1D histogram | |
| histogramdd : Multidimensional histogram | |
| Notes | |
| ----- | |
| When `normed` is True, then the returned histogram is the sample | |
| density, defined such that the sum over bins of the product | |
| ``bin_value * bin_area`` is 1. | |
| Please note that the histogram does not follow the Cartesian convention | |
| where `x` values are on the abscissa and `y` values on the ordinate | |
| axis. Rather, `x` is histogrammed along the first dimension of the | |
| array (vertical), and `y` along the second dimension of the array | |
| (horizontal). This ensures compatibility with `histogramdd`. | |
| Examples | |
| -------- | |
| >>> from matplotlib.image import NonUniformImage | |
| >>> import matplotlib.pyplot as plt | |
| Construct a 2-D histogram with variable bin width. First define the bin | |
| edges: | |
| >>> xedges = [0, 1, 3, 5] | |
| >>> yedges = [0, 2, 3, 4, 6] | |
| Next we create a histogram H with random bin content: | |
| >>> x = np.random.normal(2, 1, 100) | |
| >>> y = np.random.normal(1, 1, 100) | |
| >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) | |
| >>> # Histogram does not follow Cartesian convention (see Notes), | |
| >>> # therefore transpose H for visualization purposes. | |
| >>> H = H.T | |
| :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: | |
| >>> fig = plt.figure(figsize=(7, 3)) | |
| >>> ax = fig.add_subplot(131, title='imshow: square bins') | |
| >>> plt.imshow(H, interpolation='nearest', origin='lower', | |
| ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) | |
| <matplotlib.image.AxesImage object at 0x...> | |
| :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: | |
| >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', | |
| ... aspect='equal') | |
| >>> X, Y = np.meshgrid(xedges, yedges) | |
| >>> ax.pcolormesh(X, Y, H) | |
| <matplotlib.collections.QuadMesh object at 0x...> | |
| :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to | |
| display actual bin edges with interpolation: | |
| >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', | |
| ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) | |
| >>> im = NonUniformImage(ax, interpolation='bilinear') | |
| >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 | |
| >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 | |
| >>> im.set_data(xcenters, ycenters, H) | |
| >>> ax.images.append(im) | |
| >>> plt.show() | |
| """ | |
| from numpy import histogramdd | |
| try: | |
| N = len(bins) | |
| except TypeError: | |
| N = 1 | |
| if N != 1 and N != 2: | |
| xedges = yedges = asarray(bins) | |
| bins = [xedges, yedges] | |
| hist, edges = histogramdd([x, y], bins, range, normed, weights, density) | |
| return hist, edges[0], edges[1] | |
| def mask_indices(n, mask_func, k=0): | |
| """ | |
| Return the indices to access (n, n) arrays, given a masking function. | |
| Assume `mask_func` is a function that, for a square array a of size | |
| ``(n, n)`` with a possible offset argument `k`, when called as | |
| ``mask_func(a, k)`` returns a new array with zeros in certain locations | |
| (functions like `triu` or `tril` do precisely this). Then this function | |
| returns the indices where the non-zero values would be located. | |
| Parameters | |
| ---------- | |
| n : int | |
| The returned indices will be valid to access arrays of shape (n, n). | |
| mask_func : callable | |
| A function whose call signature is similar to that of `triu`, `tril`. | |
| That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. | |
| `k` is an optional argument to the function. | |
| k : scalar | |
| An optional argument which is passed through to `mask_func`. Functions | |
| like `triu`, `tril` take a second argument that is interpreted as an | |
| offset. | |
| Returns | |
| ------- | |
| indices : tuple of arrays. | |
| The `n` arrays of indices corresponding to the locations where | |
| ``mask_func(np.ones((n, n)), k)`` is True. | |
| See Also | |
| -------- | |
| triu, tril, triu_indices, tril_indices | |
| Notes | |
| ----- | |
| .. versionadded:: 1.4.0 | |
| Examples | |
| -------- | |
| These are the indices that would allow you to access the upper triangular | |
| part of any 3x3 array: | |
| >>> iu = np.mask_indices(3, np.triu) | |
| For example, if `a` is a 3x3 array: | |
| >>> a = np.arange(9).reshape(3, 3) | |
| >>> a | |
| array([[0, 1, 2], | |
| [3, 4, 5], | |
| [6, 7, 8]]) | |
| >>> a[iu] | |
| array([0, 1, 2, 4, 5, 8]) | |
| An offset can be passed also to the masking function. This gets us the | |
| indices starting on the first diagonal right of the main one: | |
| >>> iu1 = np.mask_indices(3, np.triu, 1) | |
| with which we now extract only three elements: | |
| >>> a[iu1] | |
| array([1, 2, 5]) | |
| """ | |
| m = ones((n, n), int) | |
| a = mask_func(m, k) | |
| return nonzero(a != 0) | |
| def tril_indices(n, k=0, m=None): | |
| """ | |
| Return the indices for the lower-triangle of an (n, m) array. | |
| Parameters | |
| ---------- | |
| n : int | |
| The row dimension of the arrays for which the returned | |
| indices will be valid. | |
| k : int, optional | |
| Diagonal offset (see `tril` for details). | |
| m : int, optional | |
| .. versionadded:: 1.9.0 | |
| The column dimension of the arrays for which the returned | |
| arrays will be valid. | |
| By default `m` is taken equal to `n`. | |
| Returns | |
| ------- | |
| inds : tuple of arrays | |
| The indices for the triangle. The returned tuple contains two arrays, | |
| each with the indices along one dimension of the array. | |
| See also | |
| -------- | |
| triu_indices : similar function, for upper-triangular. | |
| mask_indices : generic function accepting an arbitrary mask function. | |
| tril, triu | |
| Notes | |
| ----- | |
| .. versionadded:: 1.4.0 | |
| Examples | |
| -------- | |
| Compute two different sets of indices to access 4x4 arrays, one for the | |
| lower triangular part starting at the main diagonal, and one starting two | |
| diagonals further right: | |
| >>> il1 = np.tril_indices(4) | |
| >>> il2 = np.tril_indices(4, 2) | |
| Here is how they can be used with a sample array: | |
| >>> a = np.arange(16).reshape(4, 4) | |
| >>> a | |
| array([[ 0, 1, 2, 3], | |
| [ 4, 5, 6, 7], | |
| [ 8, 9, 10, 11], | |
| [12, 13, 14, 15]]) | |
| Both for indexing: | |
| >>> a[il1] | |
| array([ 0, 4, 5, ..., 13, 14, 15]) | |
| And for assigning values: | |
| >>> a[il1] = -1 | |
| >>> a | |
| array([[-1, 1, 2, 3], | |
| [-1, -1, 6, 7], | |
| [-1, -1, -1, 11], | |
| [-1, -1, -1, -1]]) | |
| These cover almost the whole array (two diagonals right of the main one): | |
| >>> a[il2] = -10 | |
| >>> a | |
| array([[-10, -10, -10, 3], | |
| [-10, -10, -10, -10], | |
| [-10, -10, -10, -10], | |
| [-10, -10, -10, -10]]) | |
| """ | |
| tri_ = tri(n, m, k=k, dtype=bool) | |
| return tuple(broadcast_to(inds, tri_.shape)[tri_] | |
| for inds in indices(tri_.shape, sparse=True)) | |
| def _trilu_indices_form_dispatcher(arr, k=None): | |
| return (arr,) | |
| def tril_indices_from(arr, k=0): | |
| """ | |
| Return the indices for the lower-triangle of arr. | |
| See `tril_indices` for full details. | |
| Parameters | |
| ---------- | |
| arr : array_like | |
| The indices will be valid for square arrays whose dimensions are | |
| the same as arr. | |
| k : int, optional | |
| Diagonal offset (see `tril` for details). | |
| See Also | |
| -------- | |
| tril_indices, tril | |
| Notes | |
| ----- | |
| .. versionadded:: 1.4.0 | |
| """ | |
| if arr.ndim != 2: | |
| raise ValueError("input array must be 2-d") | |
| return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) | |
| def triu_indices(n, k=0, m=None): | |
| """ | |
| Return the indices for the upper-triangle of an (n, m) array. | |
| Parameters | |
| ---------- | |
| n : int | |
| The size of the arrays for which the returned indices will | |
| be valid. | |
| k : int, optional | |
| Diagonal offset (see `triu` for details). | |
| m : int, optional | |
| .. versionadded:: 1.9.0 | |
| The column dimension of the arrays for which the returned | |
| arrays will be valid. | |
| By default `m` is taken equal to `n`. | |
| Returns | |
| ------- | |
| inds : tuple, shape(2) of ndarrays, shape(`n`) | |
| The indices for the triangle. The returned tuple contains two arrays, | |
| each with the indices along one dimension of the array. Can be used | |
| to slice a ndarray of shape(`n`, `n`). | |
| See also | |
| -------- | |
| tril_indices : similar function, for lower-triangular. | |
| mask_indices : generic function accepting an arbitrary mask function. | |
| triu, tril | |
| Notes | |
| ----- | |
| .. versionadded:: 1.4.0 | |
| Examples | |
| -------- | |
| Compute two different sets of indices to access 4x4 arrays, one for the | |
| upper triangular part starting at the main diagonal, and one starting two | |
| diagonals further right: | |
| >>> iu1 = np.triu_indices(4) | |
| >>> iu2 = np.triu_indices(4, 2) | |
| Here is how they can be used with a sample array: | |
| >>> a = np.arange(16).reshape(4, 4) | |
| >>> a | |
| array([[ 0, 1, 2, 3], | |
| [ 4, 5, 6, 7], | |
| [ 8, 9, 10, 11], | |
| [12, 13, 14, 15]]) | |
| Both for indexing: | |
| >>> a[iu1] | |
| array([ 0, 1, 2, ..., 10, 11, 15]) | |
| And for assigning values: | |
| >>> a[iu1] = -1 | |
| >>> a | |
| array([[-1, -1, -1, -1], | |
| [ 4, -1, -1, -1], | |
| [ 8, 9, -1, -1], | |
| [12, 13, 14, -1]]) | |
| These cover only a small part of the whole array (two diagonals right | |
| of the main one): | |
| >>> a[iu2] = -10 | |
| >>> a | |
| array([[ -1, -1, -10, -10], | |
| [ 4, -1, -1, -10], | |
| [ 8, 9, -1, -1], | |
| [ 12, 13, 14, -1]]) | |
| """ | |
| tri_ = ~tri(n, m, k=k - 1, dtype=bool) | |
| return tuple(broadcast_to(inds, tri_.shape)[tri_] | |
| for inds in indices(tri_.shape, sparse=True)) | |
| def triu_indices_from(arr, k=0): | |
| """ | |
| Return the indices for the upper-triangle of arr. | |
| See `triu_indices` for full details. | |
| Parameters | |
| ---------- | |
| arr : ndarray, shape(N, N) | |
| The indices will be valid for square arrays. | |
| k : int, optional | |
| Diagonal offset (see `triu` for details). | |
| Returns | |
| ------- | |
| triu_indices_from : tuple, shape(2) of ndarray, shape(N) | |
| Indices for the upper-triangle of `arr`. | |
| See Also | |
| -------- | |
| triu_indices, triu | |
| Notes | |
| ----- | |
| .. versionadded:: 1.4.0 | |
| """ | |
| if arr.ndim != 2: | |
| raise ValueError("input array must be 2-d") | |
| return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1]) | |