File size: 24,387 Bytes
a522962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import json
import uuid
import logging
from typing import Dict, Any, List

# Assume GameState is a TypedDict or similar for clarity
# from typing import TypedDict
# class GameState(TypedDict):
#     description: str
#     project_json: Dict[str, Any]
#     action_plan: Dict[str, Any]
#     sprite_initial_positions: Dict[str, Any]

# Placeholder for actual GameState in your application
GameState = Dict[str, Any]

logger = logging.getLogger(__name__)

# --- Mock Agent for demonstration ---
class MockAgent:
    def invoke(self, payload: Dict[str, Any]) -> Dict[str, Any]:
        """

        Mocks an LLM agent invocation. In a real scenario, this would call your

        actual LLM API (e.g., through LangChain, LlamaIndex, etc.).

        """
        user_message = payload["messages"][-1]["content"]
        print(f"\n--- Mock Agent Received Prompt (partial) ---\n{user_message[:500]}...\n------------------------------------------")

        # Simplified mock responses for demonstration purposes
        # In a real scenario, the LLM would generate actual Scratch block JSON
        if "Propose a high-level action flow" in user_message:
            return {
                "messages": [{
                    "content": json.dumps({
                        "action_overall_flow": {
                            "Sprite1": {
                                "description": "Basic movement and interaction",
                                "plans": [
                                    {
                                        "event": "when flag clicked",
                                        "logic": "forever loop: move 10 steps, if touching Edge then turn 15 degrees"
                                    },
                                    {
                                        "event": "when space key pressed",
                                        "logic": "say Hello! for 2 seconds"
                                    }
                                ]
                            },
                            "Ball": {
                                "description": "Simple bouncing behavior",
                                "plans": [
                                    {
                                        "event": "when flag clicked",
                                        "logic": "move 5 steps, if on edge bounce"
                                    }
                                ]
                            }
                        }
                    })
                }]
            }
        elif "You are an AI assistant generating Scratch 3.0 block JSON" in user_message:
            # This mock response is highly simplified. A real LLM would generate
            # valid Scratch blocks based on the provided relevant catalog and plan.
            # We're just demonstrating the *mechanism* of filtering the catalog.
            if "Sprite1" in user_message:
                return {
                    "messages": [{
                        "content": json.dumps({
                            f"block_id_{generate_block_id()}": {
                                "opcode": "event_whenflagclicked",
                                "next": f"block_id_{generate_block_id()}_forever",
                                "parent": None,
                                "inputs": {}, "fields": {}, "shadow": False, "topLevel": True, "x": 100, "y": 100
                            },
                            f"block_id_{generate_block_id()}_forever": {
                                "opcode": "control_forever",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}",
                                "inputs": {
                                    "SUBSTACK": [2, f"block_id_{generate_block_id()}_move"]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_move": {
                                "opcode": "motion_movesteps",
                                "next": f"block_id_{generate_block_id()}_if",
                                "parent": f"block_id_{generate_block_id()}_forever",
                                "inputs": {
                                    "STEPS": [1, [4, "10"]]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                             f"block_id_{generate_block_id()}_if": {
                                "opcode": "control_if",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}_forever",
                                "inputs": {
                                    "CONDITION": [2, f"block_id_{generate_block_id()}_touching"],
                                    "SUBSTACK": [2, f"block_id_{generate_block_id()}_turn"]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_touching": {
                                "opcode": "sensing_touchingobject",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}_if",
                                "inputs": {
                                    "TOUCHINGOBJECTMENU": [1, f"block_id_{generate_block_id()}_touching_menu"]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_touching_menu": {
                                "opcode": "sensing_touchingobjectmenu",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}_touching",
                                "inputs": {},
                                "fields": {"TOUCHINGOBJECTMENU": ["_edge_", None]},
                                "shadow": True, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_turn": {
                                "opcode": "motion_turnright",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}_if",
                                "inputs": {
                                    "DEGREES": [1, [4, "15"]]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_say": {
                                "opcode": "looks_sayforsecs",
                                "next": None,
                                "parent": None, # This block would typically be part of a separate script
                                "inputs": {
                                    "MESSAGE": [1, [10, "Hello!"]],
                                    "SECS": [1, [4, "2"]]
                                }, "fields": {}, "shadow": False, "topLevel": True, "x": 300, "y": 100
                            }
                        })
                    }]
                }
            elif "Ball" in user_message:
                 return {
                    "messages": [{
                        "content": json.dumps({
                            f"block_id_{generate_block_id()}": {
                                "opcode": "event_whenflagclicked",
                                "next": f"block_id_{generate_block_id()}_moveball",
                                "parent": None,
                                "inputs": {}, "fields": {}, "shadow": False, "topLevel": True, "x": 100, "y": 100
                            },
                            f"block_id_{generate_block_id()}_moveball": {
                                "opcode": "motion_movesteps",
                                "next": f"block_id_{generate_block_id()}_edgebounce",
                                "parent": f"block_id_{generate_block_id()}",
                                "inputs": {
                                    "STEPS": [1, [4, "5"]]
                                }, "fields": {}, "shadow": False, "topLevel": False
                            },
                            f"block_id_{generate_block_id()}_edgebounce": {
                                "opcode": "motion_ifonedgebounce",
                                "next": None,
                                "parent": f"block_id_{generate_block_id()}_moveball",
                                "inputs": {}, "fields": {}, "shadow": False, "topLevel": False
                            }
                        })
                    }]
                }
        return {"messages": [{"content": "[]"}]} # Default empty response

agent = MockAgent()

# Helper function to generate a unique block ID
def generate_block_id():
    return str(uuid.uuid4())[:10].replace('-', '') # Shorten for readability, ensure uniqueness

# Placeholder for your extract_json_from_llm_response function
def extract_json_from_llm_response(response_string):
    try:
        # Assuming the LLM response is ONLY the JSON string within triple backticks
        json_match = response_string.strip().replace("```json", "").replace("```", "").strip()
        return json.loads(json_match)
    except json.JSONDecodeError as e:
        logger.error(f"Failed to decode JSON from LLM response: {e}")
        logger.error(f"Raw response: {response_string}")
        raise ValueError("Invalid JSON response from LLM")

# --- GLOBAL CATALOG OF ALL SCRATCH BLOCKS ---
# This is where you would load your block_content.json
# For demonstration, I'm using your provided snippets and adding some common ones.
# In a real application, you'd load this once at startup.
ALL_SCRATCH_BLOCKS_CATALOG = {
    "motion_movesteps": {
        "opcode": "motion_movesteps", "next": None, "parent": None,
        "inputs": {"STEPS": [1, [4, "10"]]}, "fields": {}, "shadow": False, "topLevel": True, "x": 464, "y": -416
    },
    "motion_turnright": {
        "opcode": "motion_turnright", "next": None, "parent": None,
        "inputs": {"DEGREES": [1, [4, "15"]]}, "fields": {}, "shadow": False, "topLevel": True, "x": 467, "y": -316
    },
    "motion_ifonedgebounce": {
        "opcode": "motion_ifonedgebounce", "next": None, "parent": None,
        "inputs": {}, "fields": {}, "shadow": False, "topLevel": True, "x": 467, "y": -316
    },
    "event_whenflagclicked": {
        "opcode": "event_whenflagclicked", "next": None, "parent": None,
        "inputs": {}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "event_whenkeypressed": {
        "opcode": "event_whenkeypressed", "next": None, "parent": None,
        "inputs": {}, "fields": {"KEY_OPTION": ["space", None]}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "control_forever": {
        "opcode": "control_forever", "next": None, "parent": None,
        "inputs": {"SUBSTACK": [2, "some_id"]}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "control_if": {
        "opcode": "control_if", "next": None, "parent": None,
        "inputs": {"CONDITION": [2, "some_id"], "SUBSTACK": [2, "some_id_2"]}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "looks_sayforsecs": {
        "opcode": "looks_sayforsecs", "next": None, "parent": None,
        "inputs": {"MESSAGE": [1, [10, "Hello!"]], "SECS": [1, [4, "2"]]}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "looks_say": {
        "opcode": "looks_say", "next": None, "parent": None,
        "inputs": {"MESSAGE": [1, [10, "Hello!"]]}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "sensing_touchingobject": {
        "opcode": "sensing_touchingobject", "next": None, "parent": None,
        "inputs": {"TOUCHINGOBJECTMENU": [1, "some_id"]}, "fields": {}, "shadow": False, "topLevel": True, "x": 10, "y": 10
    },
    "sensing_touchingobjectmenu": {
        "opcode": "sensing_touchingobjectmenu", "next": None, "parent": None,
        "inputs": {}, "fields": {"TOUCHINGOBJECTMENU": ["_mouse_", None]}, "shadow": True, "topLevel": True, "x": 10, "y": 10
    },
    # Add more blocks from your block_content.json here...
}

# --- Heuristic-based block selection ---
def get_relevant_blocks_for_plan(action_plan: Dict[str, Any], all_blocks_catalog: Dict[str, Any]) -> Dict[str, Any]:
    """

    Analyzes the natural language action plan and selects relevant Scratch blocks

    from the comprehensive catalog. This is a heuristic approach and might need

    to be refined based on your specific use cases and LLM capabilities.

    """
    relevant_opcodes = set()

    # Always include common event blocks
    relevant_opcodes.add("event_whenflagclicked")
    relevant_opcodes.add("event_whenkeypressed") # Could be more specific if key is mentioned

    # Keyword to opcode mapping (can be expanded)
    keyword_map = {
        "move": "motion_movesteps",
        "steps": "motion_movesteps",
        "turn": "motion_turnright",
        "rotate": "motion_turnright",
        "bounce": "motion_ifonedgebounce",
        "edge": "motion_ifonedgebounce",
        "forever": "control_forever",
        "loop": "control_forever",
        "if": "control_if",
        "condition": "control_if",
        "say": "looks_say",
        "hello": "looks_say", # Simple example, might need more context
        "touching": "sensing_touchingobject",
        "mouse pointer": "sensing_touchingobjectmenu",
        "edge": "sensing_touchingobjectmenu", # For touching edge
    }

    # Iterate through the action plan to find keywords
    for sprite_name, sprite_actions in action_plan.get("action_overall_flow", {}).items():
        for plan in sprite_actions.get("plans", []):
            event_logic = plan.get("event", "").lower() + " " + plan.get("logic", "").lower()

            # Check for direct opcode matches (if the LLM somehow outputs opcodes in its plan)
            for opcode in all_blocks_catalog.keys():
                if opcode in event_logic:
                    relevant_opcodes.add(opcode)

            # Check for keywords
            for keyword, opcode in keyword_map.items():
                if keyword in event_logic:
                    relevant_opcodes.add(opcode)
                    # Add associated shadow blocks if known
                    if opcode == "sensing_touchingobject":
                        relevant_opcodes.add("sensing_touchingobjectmenu")
                    if opcode == "event_whenkeypressed":
                         relevant_opcodes.add("event_whenkeypressed") # It's already there but good to be explicit

    # Construct the filtered catalog
    relevant_blocks_catalog = {
        opcode: all_blocks_catalog[opcode]
        for opcode in relevant_opcodes if opcode in all_blocks_catalog
    }
    return relevant_blocks_catalog

# --- New Action Planning Node ---
def plan_sprite_actions(state: GameState):
    logger.info("--- Running PlanSpriteActionsNode ---")

    planning_prompt = (
        f"You are an AI assistant tasked with planning Scratch 3.0 block code for a game. "
        f"The game description is: '{state['description']}'.\n\n"
        f"Here are the sprites currently in the project: {', '.join(target['name'] for target in state['project_json']['targets'] if not target['isStage']) if len(state['project_json']['targets']) > 1 else 'None'}.\n"
        f"Initial positions: {json.dumps(state.get('sprite_initial_positions', {}), indent=2)}\n\n"
        f"Consider the main actions and interactions required for each sprite. "
        f"Think step-by-step about what each sprite needs to *do*, *when* it needs to do it (events), "
        f"and if any actions need to *repeat* or depend on *conditions*.\n\n"
        f"Propose a high-level action flow for each sprite in the following JSON format. "
        f"Do NOT generate Scratch block JSON yet. Only describe the logic using natural language or simplified pseudo-code.\n\n"
        f"Example format:\n"
        f"```json\n"
        f"{{\n"
        f"  \"action_overall_flow\": {{\n"
        f"    \"Sprite1\": {{\n"
        f"      \"description\": \"Main character actions\",\n"
        f"      \"plans\": [\n"
        f"        {{\n"
        f"          \"event\": \"when flag clicked\",\n"
        f"          \"logic\": \"forever loop: move 10 steps, if on edge bounce\"\n"
        f"        }},\n"
        f"        {{\n"
        f"          \"event\": \"when space key pressed\",\n"
        f"          \"logic\": \"change y by 10, wait 0.1 seconds, change y by -10\"\n"
        f"        }}\n"
        f"      ]\n"
        f"    }},\n"
        f"    \"Ball\": {{\n"
        f"      \"description\": \"Projectile movement\",\n"
        f"      \"plans\": [\n"
        f"        {{\n"
        f"          \"event\": \"when I start as a clone\",\n"
        f"          \"logic\": \"glide 1 sec to random position, if touching Sprite1 then stop this script\"\n"
        f"        }}\n"
        f"      ]\n"
        f"    }}\n"
        f"  }}\n"
        f"}}\n"
        f"```\n\n"
        f"Return ONLY the JSON object for the action overall flow."
    )

    try:
        response = agent.invoke({"messages": [{"role": "user", "content": planning_prompt}]})
        raw_response = response["messages"][-1].content
        print("Raw response from LLM [PlanSpriteActionsNode]:", raw_response)
        action_plan = extract_json_from_llm_response(raw_response)
        logger.info("Sprite action plan generated by PlanSpriteActionsNode.")
        return {"action_plan": action_plan}
    except Exception as e:
        logger.error(f"Error in PlanSpriteActionsNode: {e}")
        raise

# --- Updated Action Node Builder (to consume the plan and build blocks) ---
def build_action_nodes(state: GameState):
    logger.info("--- Running ActionNodeBuilder ---")

    action_plan = state.get("action_plan", {})
    if not action_plan:
        raise ValueError("No action plan found in state. Run PlanSpriteActionsNode first.")

    # Convert the Scratch project JSON to a mutable Python object
    project_json = state["project_json"]
    targets = project_json["targets"]

    # We need a way to map sprite names to their actual target objects in project_json
    sprite_map = {target["name"]: target for target in targets if not target["isStage"]}

    # --- NEW: Get only the relevant blocks for the entire action plan ---
    relevant_scratch_blocks_catalog = get_relevant_blocks_for_plan(action_plan, ALL_SCRATCH_BLOCKS_CATALOG)
    logger.info(f"Filtered {len(relevant_scratch_blocks_catalog)} relevant blocks out of {len(ALL_SCRATCH_BLOCKS_CATALOG)} total.")


    # Iterate through the planned actions for each sprite
    for sprite_name, sprite_actions in action_plan.get("action_overall_flow", {}).items():
        if sprite_name in sprite_map:
            current_sprite_target = sprite_map[sprite_name]
            # Ensure 'blocks' field exists for the sprite
            if "blocks" not in current_sprite_target:
                current_sprite_target["blocks"] = {}

            # Generate block JSON based on the detailed action plan for this sprite
            # This is where the LLM's role becomes crucial: translating logic to blocks
            llm_block_generation_prompt = (
                f"You are an AI assistant generating Scratch 3.0 block JSON based on a provided plan. "
                f"The current sprite is '{sprite_name}'.\n"
                f"Its planned actions are:\n"
                f"```json\n{json.dumps(sprite_actions, indent=2)}\n```\n\n"
                f"Here is a **curated catalog of only the most relevant Scratch 3.0 blocks** for this plan:\n"
                f"```json\n{json.dumps(relevant_scratch_blocks_catalog, indent=2)}\n```\n\n"
                f"Current Scratch project JSON (for context, specifically this sprite's existing blocks if any):\n"
                f"```json\n{json.dumps(current_sprite_target, indent=2)}\n```\n\n"
                f"**Instructions:**\n"
                f"1.  For each planned event and its associated logic, generate the corresponding Scratch 3.0 block JSON.\n"
                f"2.  **Generate unique block IDs** for every new block. Use a format like 'block_id_abcdef12'.\n" # Updated ID format hint
                f"3.  Properly link blocks using `next` and `parent` fields to form execution stacks. Hat blocks (`topLevel: true`, `parent: null`).\n"
                f"4.  Correctly fill `inputs` and `fields` based on the catalog and the plan's logic (e.g., specific values for motion, keys for events, conditions for controls).\n"
                f"5.  For C-blocks (like `control_repeat`, `control_forever`, `control_if`), use the `SUBSTACK` input to link to the first block inside its loop/conditional.\n"
                f"6.  If the plan involves operators (e.g., 'if touching Sprite1'), use the appropriate operator blocks from the catalog and link them correctly as `CONDITION` inputs.\n"
                f"7.  Ensure that any shadow blocks (e.g., for dropdowns like `motion_goto_menu`, `sensing_touchingobjectmenu`) are generated with `shadow: true` and linked correctly as inputs to their parent block.\n"
                f"8.  Return ONLY the **updated 'blocks' dictionary** for this specific sprite. Do NOT return the full project JSON. ONLY the `blocks` dictionary."
            )

            try:
                response = agent.invoke({"messages": [{"role": "user", "content": llm_block_generation_prompt}]})
                raw_response = response["messages"][-1].content
                print(f"Raw response from LLM [ActionNodeBuilder - {sprite_name}]:", raw_response)
                generated_blocks = extract_json_from_llm_response(raw_response)
                current_sprite_target["blocks"].update(generated_blocks) # Merge new blocks
                logger.info(f"Action blocks added for sprite '{sprite_name}' by ActionNodeBuilder.")
            except Exception as e:
                logger.error(f"Error generating blocks for sprite '{sprite_name}': {e}")
                # Depending on robustness needed, you might continue or re-raise
                raise

    return {"project_json": project_json}

# --- Example Usage (to demonstrate the flow) ---
if __name__ == "__main__":
    # Initialize a mock game state
    initial_game_state = {
        "description": "A simple game where a sprite moves and says hello.",
        "project_json": {
            "targets": [
                {"isStage": True, "name": "Stage", "blocks": {}},
                {"isStage": False, "name": "Sprite1", "blocks": {}},
                {"isStage": False, "name": "Ball", "blocks": {}}
            ]
        },
        "sprite_initial_positions": {}
    }

    # Step 1: Plan Sprite Actions
    try:
        state_after_planning = plan_sprite_actions(initial_game_state)
        initial_game_state.update(state_after_planning)
        print("\n--- Game State After Planning ---")
        print(json.dumps(initial_game_state, indent=2))
    except Exception as e:
        print(f"Planning failed: {e}")
        exit()

    # Step 2: Build Action Nodes (Generate Blocks)
    try:
        state_after_building = build_action_nodes(initial_game_state)
        initial_game_state.update(state_after_building)
        print("\n--- Game State After Building Blocks ---")
        # Print only the blocks for a specific sprite to keep output manageable
        for target in initial_game_state["project_json"]["targets"]:
            if not target["isStage"]:
                print(f"\nBlocks for {target['name']}:")
                print(json.dumps(target.get('blocks', {}), indent=2))

    except Exception as e:
        print(f"Building blocks failed: {e}")