File size: 80,804 Bytes
a522962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
#─── Basic imports ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
import os
import math
import sqlite3
import fitz  # PyMuPDF for PDF parsing
import re

from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()  # This line ensures .env variables are loaded

from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langgraph.constants import START
from langchain_core.tools import tool
from langchain.schema import SystemMessage
#from langchain.chat_models import init_chat_model
#from langgraph.prebuilt import create_react_agent

from langchain.embeddings import HuggingFaceEmbeddings
#from langchain.vectorstores import Pinecone
from langchain.tools.retriever import create_retriever_tool
#import pinecone
#from pinecone import Pinecone as PineconeClient, ServerlessSpec
#from pinecone import Index  # the blocking‐call client constructor
#from pinecone import Pinecone as PineconeClient, ServerlessSpec
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores.pinecone import Pinecone as LC_Pinecone

# ─── Langchain Frameworks ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#from langchain.tools import Tool
from langchain.chat_models import ChatOpenAI
from langchain_groq import ChatGroq
from langchain_mistralai import ChatMistralAI
from langchain.agents import initialize_agent, AgentType
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader, PyMuPDFLoader
from langchain_community.document_loaders.wikipedia import WikipediaLoader
from langchain_community.document_loaders.arxiv import ArxivLoader
from langchain_experimental.tools.python.tool import PythonREPLTool


# ─── Memory ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool
from typing import List, Callable
from langchain.schema import BaseMemory, AIMessage, HumanMessage, SystemMessage
from langchain.schema import HumanMessage, SystemMessage
from langchain.llms.base import LLM
from langchain.memory.chat_memory import BaseChatMemory
from pydantic import PrivateAttr
from langchain_core.messages import get_buffer_string
            
# ─── Image Processing ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
 
from PIL import Image
import pytesseract
from transformers import pipeline
from groq import Groq
import requests
from io import BytesIO
from transformers import pipeline, TrOCRProcessor, VisionEncoderDecoderModel
import requests
import base64
from PIL import UnidentifiedImageError

# ─── Browser var ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
from typing import List, Dict
import json
from io import BytesIO
#from langchain.tools import tool  # or langchain_core.tools
from playwright.sync_api import sync_playwright
from duckduckgo_search import DDGS
import time
import random
import logging
from functools import lru_cache, wraps
import requests
from playwright.sync_api import sync_playwright
from bs4 import BeautifulSoup
import tenacity
from tenacity import retry, stop_after_attempt, wait_exponential

# Initialize logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Additional imports for new functionality
import pandas as pd
from PyPDF2 import PdfReader
import docx
import pytesseract
import speech_recognition as sr
from pydub import AudioSegment
from pytube import YouTube
from newspaper import Article
from langchain.document_loaders import ArxivLoader
from langchain_community.document_loaders.youtube import YoutubeLoader, TranscriptFormat

from playwright.sync_api import sync_playwright
# Attempt to import Playwright for dynamic page rendering
try:
    from playwright.sync_api import sync_playwright
    _playwright_available = True
except ImportError:
    _playwright_available = False

# Define forbidden keywords for basic NSFW filtering
_forbidden = ["porn", "sex", "xxx", "nude", "erotic"]

# ─── LLM Setup ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# Load OpenAI API key from environment (required for LLM and embeddings)

# API Keys from .env file
os.environ.setdefault("OPENAI_API_KEY", "<YOUR_OPENAI_KEY>")  # Set your own key or env var
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY", "default_key_or_placeholder")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY", "default_key_or_placeholder")

# Tavily API Key
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY", "default_key_or_placeholder")
_forbidden = ["nsfw", "porn", "sex", "explicit"]
_playwright_available = True  # set False to disable Playwright

# Globals for RAG system
vector_store = None
rag_chain = None
DB_PATH = None  # will be set when a .db is uploaded
DOC_PATH = None  # will be set when a document is uploaded
IMG_PATH = None  # will be set when an image is uploaded
OTH_PATH = None  # will be set when an other file is uploaded


# ─── LLMS ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#llm = ChatOpenAI(model_name="gpt-3.5-turbo", streaming=True, temperature=0)
from tenacity import retry, stop_after_attempt, wait_exponential

# Import the RetryingChatGroq client
from retry_groq import RetryingChatGroq

# Use the retrying version instead
llm = RetryingChatGroq(model="deepseek-r1-distill-llama-70b", streaming=False, temperature=0)
#llm = ChatMistralAI(model="mistral-large-latest", streaming=True, temperature=0)

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for multiply ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def multiply(a: int, b: int) -> int:
    """
    Multiply two numbers.

    Args:
        a (int): The first factor.
        b (int): The second factor.

    Returns:
        int: The product of a and b.
    """
    try:
        # Direct calculation without relying on LangChain handling
        result = a * b
        return result
    except Exception as e:
        return f"Error in multiplication: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for add ──────────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def add(a: int, b: int) -> int:
    """
    Add two numbers.

    Args:
        a (int): The first factor.
        b (int): The second factor.

    Returns:
        int: The addition of a and b.
    """
    try:
        # Direct calculation without relying on LangChain handling
        result = a + b
        return result
    except Exception as e:
        return f"Error in addition: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for subtract ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def subtract(a: int, b: int) -> int:
    """
    Subtract two numbers.

    Args:
        a (int): The first factor.
        b (int): The second factor.

    Returns:
        int: The subtraction of a and b.
    """
    try:
        # Direct calculation without relying on LangChain handling
        result = a - b
        return result
    except Exception as e:
        return f"Error in subtraction: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for divide ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def divide(a: int, b: int) -> int:
    """
    Divide two numbers.

    Args:
        a (int): The numerator.
        b (int): The denominator.

    Returns:
        float: The result of a divided by b.

    Raises:
        ValueError: If b is zero.
    """
    try:
        if b == 0:
            return "Error: Cannot divide by zero."
        # Direct calculation without relying on LangChain handling
        result = a / b
        return result
    except Exception as e:
        return f"Error in division: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for modulus ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def modulus(a: int, b: int) -> int:
    """
    Get the modulus (remainder) of two numbers.

    Args:
        a (int): The dividend.
        b (int): The divisor.

    Returns:
        int: The remainder when a is divided by b.
    """
    try:
        if b == 0:
            return "Error: Cannot calculate modulus with zero divisor."
        # Direct calculation without relying on LangChain handling
        result = a % b
        return result
    except Exception as e:
        return f"Error in modulus calculation: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for browsing ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
def with_retry(max_attempts: int = 3, backoff_base: int = 2):
    """
    Decorator for retrying a function with exponential backoff on exception.
    """
    def decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            for attempt in range(max_attempts):
                try:
                    return fn(*args, **kwargs)
                except Exception as e:
                    wait = backoff_base ** attempt + random.uniform(0, 1)
                    logger.warning(f"{fn.__name__} failed (attempt {attempt+1}/{max_attempts}): {e}")
                    if attempt < max_attempts - 1:
                        time.sleep(wait)
            logger.error(f"{fn.__name__} failed after {max_attempts} attempts.")
            return []
        return wrapper
    return decorator

@with_retry()
@lru_cache(maxsize=128)
def tavily_search(query: str, top_k: int = 3) -> List[Dict]:
    """Call Tavily API and return a list of result dicts."""
    if not TAVILY_API_KEY:
        logger.info("[Tavily] No API key set. Skipping Tavily search.")
        return []
    url = "https://api.tavily.com/search"
    headers = {
        "Authorization": f"Bearer {TAVILY_API_KEY}",
        "Content-Type": "application/json",
    }
    payload = {"query": query, "num_results": top_k}
    resp = requests.post(url, headers=headers, json=payload, timeout=10)
    resp.raise_for_status()
    data = resp.json()
    results = []
    for item in data.get("results", []):
        results.append({
            "title": item.get("title", ""),
            "url": item.get("url", ""),
            "content": item.get("content", "")[:200],
            "source": "Tavily"
        })
    return results

@with_retry()
@lru_cache(maxsize=128)
def duckduckgo_search(query: str, top_k: int = 3) -> List[Dict]:
    """Query DuckDuckGo and return up to top_k raw SERP hits."""
    results = []
    try:
        with DDGS(timeout=15) as ddgs:  # Increase timeout from default
            for hit in ddgs.text(query, safesearch="On", max_results=top_k, timeout=15):
                results.append({
                    "title": hit.get("title", ""),
                    "url": hit.get("href") or hit.get("url", ""),
                    "content": hit.get("body", ""),
                    "source": "DuckDuckGo"
                })
                if len(results) >= top_k:
                    break
    except Exception as e:
        logger.warning(f"DuckDuckGo search failed: {e}")
        # Don't re-raise - just return empty results to allow fallbacks to work
    
    return results

# Additional fallback search alternative
def simple_google_search(query: str, top_k: int = 3) -> List[Dict]:
    """Simplified Google search as a fallback when other methods fail."""
    try:
        # Encode the query
        import urllib.parse
        import bs4
        
        encoded_query = urllib.parse.quote(query)
        url = f"https://www.google.com/search?q={encoded_query}"
        
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36",
            "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
            "Accept-Language": "en-US,en;q=0.5",
            "Referer": "https://www.google.com/",
            "Connection": "keep-alive",
        }
        
        response = requests.get(url, headers=headers, timeout=20)
        response.raise_for_status()
        
        soup = bs4.BeautifulSoup(response.text, "html.parser")
        results = []
        
        # Extract search results
        for result in soup.select("div.g")[:top_k]:
            title_elem = result.select_one("h3")
            link_elem = result.select_one("a")
            snippet_elem = result.select_one("div.VwiC3b")
            
            if title_elem and link_elem and snippet_elem and "href" in link_elem.attrs:
                href = link_elem["href"]
                if href.startswith("/url?q="):
                    href = href.split("/url?q=")[1].split("&")[0]
                
                if href.startswith("http"):
                    results.append({
                        "title": title_elem.get_text(),
                        "url": href,
                        "content": snippet_elem.get_text(),
                        "source": "Google"
                    })
        
        return results
    
    except Exception as e:
        logger.warning(f"Simple Google search failed: {e}")
        return []

def hybrid_search(query: str, top_k: int = 3) -> List[Dict]:
    """Combine multiple search sources with fallbacks."""
    # Try primary search methods first
    results = []
    
    # Start with Tavily if API key is available
    if TAVILY_API_KEY and TAVILY_API_KEY != "default_key_or_placeholder":
        try:
            tavily_results = tavily_search(query, top_k)
            results.extend(tavily_results)
            logger.info(f"Retrieved {len(tavily_results)} results from Tavily")
        except Exception as e:
            logger.warning(f"Tavily search failed: {e}")
    
    # If we don't have enough results, try DuckDuckGo
    if len(results) < top_k:
        try:
            ddg_results = duckduckgo_search(query, top_k - len(results))
            results.extend(ddg_results)
            logger.info(f"Retrieved {len(ddg_results)} results from DuckDuckGo")
        except Exception as e:
            logger.warning(f"DuckDuckGo search failed: {e}")
    
    # If we still don't have enough results, try Google
    if len(results) < top_k:
        try:
            google_results = simple_google_search(query, top_k - len(results))
            results.extend(google_results)
            logger.info(f"Retrieved {len(google_results)} results from Google")
        except Exception as e:
            logger.warning(f"Google search failed: {e}")
    
    # If all search methods failed, return a dummy result
    if not results:
        results.append({
            "title": "Search Failed",
            "url": "",
            "content": f"Sorry, I couldn't find results for '{query}'. Please try refining your search terms or check your internet connection.",
            "source": "No results"
        })
    
    return results[:top_k]  # Ensure we only return top_k results

def format_search_docs(search_docs: List[Dict]) -> Dict[str, str]:
    """
    Turn a list of {source, page, content} dicts into one big
    string with <Document ...>…</Document> entries separated by `---`.
    """
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc["source"]}" page="{doc.get("page", "")}"/>\n'
            f'{doc.get("content", "")}\n'
            f'</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}


@tool(parse_docstring=True)
def web_search(query: str, top_k: int = 3) -> Dict[str, str]:
    """
    Perform a hybrid web search combining multiple search engines with robust fallbacks.

    Args:
        query: The search query string to look up.
        top_k: The maximum number of search results to return (default is 3).

    Returns:
        A dictionary mapping result indices to XML-like <Document> blocks, each containing:
        - source: The URL of the webpage.
        - page: Placeholder for page identifier (empty string by default).
        - content: The first 200 words of the page text, cleaned of HTML tags.
    """
    try:
        # Use our robust hybrid search to get initial results
        search_results = hybrid_search(query, top_k)
        results = []
        
        # Process each search result to get better content
        for hit in search_results:
            url = hit.get("url")
            if not url:
                continue
                
            # Start with the snippet from search
            content = hit.get("content", "")
            title = hit.get("title", "")
            
            # Try to scrape additional content if possible
            try:
                # Use a random user agent to avoid blocking
                headers = {
                    "User-Agent": random.choice([
                        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36",
                        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.0 Safari/605.1.15",
                        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36",
                        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36 Edg/97.0.1072.62"
                    ]),
                    "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
                    "Accept-Language": "en-US,en;q=0.5",
                    "Referer": "https://www.google.com/",
                    "DNT": "1",
                    "Connection": "keep-alive"
                }
                
                # Higher timeout for better reliability
                resp = requests.get(url, timeout=15, headers=headers)
                
                # Only process if successful
                if resp.status_code == 200:
                    soup = BeautifulSoup(resp.text, "html.parser")
                    
                    # Try to find main content
                    main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
                    
                    # If we found main content, use it
                    if main_content:
                        extracted_text = main_content.get_text(separator=" ", strip=True)
                        # Take first 200 words
                        content = " ".join(extracted_text.split()[:200])
                    else:
                        # Otherwise use all text
                        all_text = soup.get_text(separator=" ", strip=True)
                        content = " ".join(all_text.split()[:200])
                        
                    # Use content from page only if it's substantial
                    if len(content) < 50:
                        content = hit.get("content", "")[:200]
                
                # Random delay between 0.5-1.5 seconds to avoid rate limits
                time.sleep(0.5 + random.random())
                
            except requests.exceptions.HTTPError as e:
                logger.warning(f"HTTP error when scraping {url}: {e}")
                # Keep the search snippet as a fallback
            except requests.exceptions.RequestException as e:
                logger.warning(f"Request error when scraping {url}: {e}")
                # Keep the search snippet as a fallback
            except Exception as e:
                logger.warning(f"Unexpected error when scraping {url}: {e}")
                # Keep the search snippet as a fallback
                
            # Filter out inappropriate content
            if any(f in content.lower() for f in _forbidden):
                continue
                
            # Add to results
            results.append({
                "source": url,
                "page": "",
                "content": content
            })
            
        # Return formatted search docs
        return format_search_docs(results[:top_k])
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        # Return a helpful error message
        return format_search_docs([{
            "source": "Error",
            "page": "",
            "content": f"Search failed with error: {e}. Please try again with different search terms."
        }])

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for File System ───────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
@tool(parse_docstring=True)
def download_file(url: str, dest_path: str) -> str:
    """
    Download a file from a given URL and save it locally.

    Args:
        url: The direct URL of the file to download.
        dest_path: The local path to save the downloaded file.

    Returns:
        The destination path where the file was saved.
    """
    r = requests.get(url, stream=True)
    r.raise_for_status()
    with open(dest_path, 'wb') as f:
        for chunk in r.iter_content(8192):
            f.write(chunk)
    return dest_path

@tool(parse_docstring=True)
def process_excel_to_text(file_path: str) -> str:
    """
    Convert an Excel file into CSV-formatted text.

    Args:
        file_path: Path to the Excel (.xlsx) file.

    Returns:
        A string of CSV-formatted content extracted from the Excel file.
    """
    try:
        # Check if file exists
        import os
        if not os.path.exists(file_path):
            return f"Error: Excel file '{file_path}' does not exist."
            
        # Try different engines
        engines = ['openpyxl', 'xlrd', None]
        
        for engine in engines:
            try:
                # For engine=None, pandas will try to auto-detect
                if engine:
                    df = pd.read_excel(file_path, engine=engine)
                else:
                    df = pd.read_excel(file_path)
                return df.to_csv(index=False)
            except Exception as e:
                print(f"Excel engine {engine} failed: {e}")
                last_error = e
                continue
        
        # If we got here, all engines failed
        return f"Error processing Excel file: {str(last_error)}"
    except Exception as e:
        return f"Error with Excel file: {str(e)}"
    
@tool(parse_docstring=True)
def read_text_from_pdf(file_path: str, question: str = None) -> str:
    """
    Extract text from a PDF file, chunking large documents if needed.

    Args:
        file_path: Path to the PDF file.
        question: Optional question to help retrieve relevant parts of long documents.

    Returns:
        The extracted text content, potentially chunked if the document is large.
    """
    try:
        # Check if file exists
        import os
        if not os.path.exists(file_path):
            return f"Error: PDF file '{file_path}' does not exist."
            
        reader = PdfReader(file_path)
        full_text = "\n".join([page.extract_text() or "" for page in reader.pages])
        
        # If a question is provided, use retrieval to get relevant parts
        if question and len(full_text) > 5000:  # Only chunk if text is large
            return process_large_document(full_text, question)
        
        return full_text
    except Exception as e:
        return f"Error reading PDF: {str(e)}"

@tool(parse_docstring=True)
def read_text_from_docx(file_path: str, question: str = None) -> str:
    """
    Extract text from a DOCX (Word) document, chunking large documents if needed.

    Args:
        file_path: Path to the DOCX file.
        question: Optional question to help retrieve relevant parts of long documents.

    Returns:
        The extracted text, potentially chunked if the document is large.
    """
    try:
        # Check if file exists
        import os
        if not os.path.exists(file_path):
            return f"Error: File '{file_path}' does not exist."
            
        try:
            doc = docx.Document(file_path)
            full_text = "\n".join([para.text for para in doc.paragraphs])
        except Exception as docx_err:
            # Handle "Package not found" error specifically
            if "Package not found" in str(docx_err):
                # Try to read raw text if possible
                try:
                    import zipfile
                    from xml.etree.ElementTree import XML
                    
                    WORD_NAMESPACE = '{http://schemas.openxmlformats.org/wordprocessingml/2006/main}'
                    PARA = WORD_NAMESPACE + 'p'
                    TEXT = WORD_NAMESPACE + 't'
                    
                    with zipfile.ZipFile(file_path) as docx_file:
                        with docx_file.open('word/document.xml') as document:
                            tree = XML(document.read())
                            paragraphs = []
                            for paragraph in tree.iter(PARA):
                                texts = [node.text for node in paragraph.iter(TEXT) if node.text]
                                if texts:
                                    paragraphs.append(''.join(texts))
                            full_text = '\n'.join(paragraphs)
                except Exception as e:
                    return f"Error reading DOCX file: {str(e)}"
            else:
                return f"Error reading DOCX file: {str(docx_err)}"
        
        # If a question is provided, use retrieval to get relevant parts
        if question and len(full_text) > 5000:  # Only chunk if text is large
            return process_large_document(full_text, question)
        
        return full_text
    except Exception as e:
        return f"Error reading DOCX file: {str(e)}"


@tool(parse_docstring=True)
def transcribe_audio(file_path: str) -> str:
    """
    Transcribe speech from a local audio file to text.

    Args:
        file_path: Path to the audio file.

    Returns:
        Transcribed text using Google Web Speech API.
    """
    try:
        # Check if file exists
        import os
        if not os.path.exists(file_path):
            return f"Error: Audio file '{file_path}' does not exist."
            
        # For non-WAV files, convert to WAV first
        if not file_path.lower().endswith('.wav'):
            try:
                from pydub import AudioSegment
                temp_wav = os.path.splitext(file_path)[0] + "_temp.wav"
                audio = AudioSegment.from_file(file_path)
                audio.export(temp_wav, format="wav")
                file_path = temp_wav
            except Exception as e:
                return f"Failed to convert audio to WAV format: {str(e)}"
                
        recognizer = sr.Recognizer()
        with sr.AudioFile(file_path) as src:
            audio = recognizer.record(src)
        return recognizer.recognize_google(audio)
    except Exception as e:
        if "Audio file could not be read" in str(e):
            return f"Error: Audio format not supported. Try converting to WAV, MP3, OGG, or FLAC."
        return f"Error transcribing audio: {str(e)}"

@tool(parse_docstring=True)
def youtube_audio_processing(youtube_url: str) -> str:
    """
    Download and transcribe audio from a YouTube video.

    Args:
        youtube_url: URL of the YouTube video.

    Returns:
        Transcription text extracted from the video's audio.
    """
    yt = YouTube(youtube_url)
    audio_stream = yt.streams.filter(only_audio=True).first()
    out_file = audio_stream.download(output_path='.', filename='yt_audio')
    wav_path = 'yt_audio.wav'
    AudioSegment.from_file(out_file).export(wav_path, format='wav')
    return transcribe_audio(wav_path)

@tool(parse_docstring=True)
def extract_article_text(url: str, question: str = None) -> str:
    """
    Download and extract the main article content from a webpage, chunking large articles if needed.

    Args:
        url: The URL of the article to extract.
        question: Optional question to help retrieve relevant parts of long articles.

    Returns:
        The article's textual content, potentially chunked if large.
    """
    try:
        art = Article(url)
        art.download()
        art.parse()
        full_text = art.text
        
        # If a question is provided, use retrieval to get relevant parts
        if question and len(full_text) > 5000:  # Only chunk if text is large
            return process_large_document(full_text, question)
        
        return full_text
    except Exception as e:
        return f"Error extracting article: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ───────────────────────────────────────────────────────────── Tool for ArXiv ────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

@tool(parse_docstring=True)
def arvix_search(query: str) -> Dict[str, str]:
    """
    Search for academic papers on ArXiv.

    Args:
        query: The search term to look for in ArXiv.

    Returns:
        A dictionary of up to 3 relevant paper entries in JSON format.
    """
    papers = ArxivLoader(query=query, load_max_docs=3).load()
    results = []
    for doc in papers:
        try:
            # Handle different metadata formats that might be returned
            source = doc.metadata.get("source", "ArXiv")
            doc_id = doc.metadata.get("id", doc.metadata.get("entry_id", ""))
            result = {
                "source": source,
                "id": doc_id,
                "summary": doc.page_content[:1000] if hasattr(doc, "page_content") else str(doc)[:1000],
            }
            results.append(result)
        except Exception as e:
            # Add error information as a fallback
            results.append({
                "source": "ArXiv Error",
                "id": "error",
                "summary": f"Error processing paper: {str(e)}"
            })
    
    return {"arvix_results": json.dumps(results)}

@tool(parse_docstring=True)
def answer_youtube_video_question(
    youtube_url: str,
    question: str,
    chunk_size_seconds: int = 30
) -> str:
    """
    Answer a question based on a YouTube video's transcript.

    Args:
        youtube_url: URL of the YouTube video.
        question: The question to be answered using video content.
        chunk_size_seconds: Duration of each transcript chunk.

    Returns:
        The answer to the question generated from the video transcript.
    """
    loader = YoutubeLoader.from_youtube_url(
        youtube_url,
        add_video_info=True,
        transcript_format=TranscriptFormat.CHUNKS,
        chunk_size_seconds=chunk_size_seconds,
    )
    documents = loader.load()
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
    vectorstore = FAISS.from_documents(documents, embeddings)
    llm = RetryingChatGroq(model="deepseek-r1-distill-llama-70b", streaming=False)
    qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
    return qa_chain.run(question)

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ───────────────────────────────────────────────────────────── Tool for Python REPL tool ────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

python_repl = PythonREPLTool()

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ───────────────────────────────────────────────────────────── Tool for Wiki ────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

@tool(parse_docstring=True)
def wiki_search(query: str) -> str:
    """
    Search Wikipedia for information on a given topic.

    Args:
        query: The search term for Wikipedia.

    Returns:
        A JSON string with up to 3 summary results.
    """
    # load up to top_k pages
    pages = WikipediaLoader(query=query, load_max_docs=3).load()
    results: List[Dict] = []
    for doc in pages:
        results.append({
            "source": doc.metadata["source"],
            "page": doc.metadata.get("page", ""),
            "content": doc.page_content[:1000],  # truncate if you like
        })
    return {"wiki_results": format_search_docs(results)}

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ───────────────────────────────────── Tool for Image (understading, captioning & classification) ─────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

def _load_image(img_path: str, resize_to=(512, 512)) -> Image.Image:
    """
    Load, verify, convert, and resize an image.
    Raises ValueError on failure.
    """
    if not img_path:
        raise ValueError("No image path provided.")
    try:
        with Image.open(img_path) as img:
            img.verify()
        img = Image.open(img_path).convert("RGB")
        img = img.resize(resize_to)
        return img
    except UnidentifiedImageError:
        raise ValueError(f"File at {img_path} is not a valid image.")
    except Exception as e:
        raise ValueError(f"Failed to load image at {img_path}: {e}")

def _encode_image_to_base64(img_path: str) -> str:
    """
    Load an image, save optimized PNG into memory, and base64‑encode it.
    """
    img = _load_image(img_path)
    buffer = BytesIO()
    img.save(buffer, format="PNG", optimize=True)
    return base64.b64encode(buffer.getvalue()).decode("utf-8")

@tool
def image_processing(prompt: str, img_path: str) -> str:
    """Process an image using a vision LLM, with OCR fallback.

    Args:
        prompt: Instruction or question related to the image.
        img_path: Path to the image file.

    Returns:
        The model's response or fallback OCR result.
    """
    try:
        import os
        # Check if file exists
        if not os.path.exists(img_path):
            return f"Error: Image file '{img_path}' does not exist."
            
        try:
            b64 = _encode_image_to_base64(img_path)
            # Build a single markdown string with inline base64 image
            md = f"{prompt}\n\n![](data:image/png;base64,{b64})"
            message = HumanMessage(content=md)
            # Use RetryingChatGroq with Llama 4 Maverick for vision
            llm = RetryingChatGroq(model="meta-llama/llama-4-maverick-17b-128e-instruct", streaming=False, temperature=0)
            try:
                resp = llm.invoke([message])
                if hasattr(resp, 'content'):
                    return resp.content.strip()
                elif isinstance(resp, str):
                    return resp.strip()
                else:
                    # Handle dictionary or other response types
                    return str(resp)
            except Exception as invoke_err:
                print(f"[LLM invoke error] {invoke_err}")
                # Fall back to OCR
                raise ValueError("LLM invocation failed")
        except Exception as llama_err:
            print(f"[LLM vision failed] {llama_err}")
            try:
                img = _load_image(img_path)
                return pytesseract.image_to_string(img).strip()
            except Exception as ocr_err:
                print(f"[OCR fallback failed] {ocr_err}")
                return "Unable to process the image. Please check the file and try again."
    except Exception as e:
        # Catch any other errors
        print(f"[image_processing error] {e}")
        return f"Error processing image: {str(e)}"

python_repl_tool = PythonREPLTool()

@tool
def echo(text: str) -> str:
    """Echo back the input text.

    Args:
        text: The string to be echoed.
        
    Returns:
        The same text that was provided as input.
    """
    return text

# ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Langgraph Agent ───────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────


# Build graph function
from langchain_core.tools import tool
from langchain.chat_models import ChatOpenAI
from langgraph.prebuilt.chat_agent_executor import create_react_agent, AgentState
from langchain.chat_models import init_chat_model



def build_graph(provider: str = "groq"):
    """Construct and compile the multi‑agent GAIA workflow StateGraph.

    This graph wires together three React‑style agents into a streamlined pipeline:
    PerceptionAgent β†’ ActionAgent β†’ EvaluationAgent (with appropriate entry/exit points)
    
    The agents have the following responsibilities:
    - PerceptionAgent: Handles web searches, Wikipedia, ArXiv, and image processing
    - ActionAgent: Performs calculations, file operations, and code analysis
    - EvaluationAgent: Reviews results and ensures the final answer is properly formatted

    Args:
        provider: The name of the LLM provider. Must be "groq".

    Returns:
        CompiledGraph: A compiled LangGraph state machine ready for invocation.

    Raises:
        ValueError: If `provider` is anything other than "groq".
    """
    try:
        if provider != "groq":
            raise ValueError("Invalid provider. Expected 'groq'.")
        
        # Initialize LLM
        try:
            logger.info("Initializing LLM with model: deepseek-r1-distill-llama-70b")
            api_key = os.getenv("GROQ_API_KEY")
            if not api_key or api_key == "default_key_or_placeholder":
                logger.error("GROQ_API_KEY is not set or is using placeholder value")
                raise ValueError("GROQ_API_KEY environment variable is not set properly. Please set a valid API key.")
                
            llm = RetryingChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0)
            logger.info("LLM initialized successfully")
        except Exception as e:
            logger.error(f"Error initializing LLM: {str(e)}")
            raise
        
        # General system message for agents
        sys_msg = SystemMessage(content="""
        You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:

        FINAL ANSWER: [YOUR FINAL ANSWER]

        YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.

        If you are asked for a number, don't use commas or units (e.g., $, %, kg) unless specified otherwise.

        If you are asked for a string, don't use articles (a, an, the), and don't use abbreviations (e.g., for states).

        If you are asked for a comma-separated list, apply the above rules to each element in the list.
                """.strip())
                
        # Special system message for the evaluation agent with stricter formatting requirements
        eval_sys_msg = SystemMessage(content="""
        You are a specialized evaluation agent. Your job is to review the work done by other agents
        and provide a final, properly formatted answer.
        
        IMPORTANT: You MUST ALWAYS format your answer using this exact template:
        
        FINAL ANSWER: [concise answer]
        
        Rules for formatting the answer:
        1. The answer must be extremely concise - use as few words as possible
        2. For numeric answers, provide only the number without units unless units are specifically requested
        3. For text answers, avoid articles (a, an, the) and unnecessary words
        4. For list answers, use a comma-separated format
        5. NEVER explain your reasoning in the FINAL ANSWER section
        6. NEVER skip the "FINAL ANSWER:" prefix
        
        Example good answers:
        FINAL ANSWER: 42
        FINAL ANSWER: Paris
        FINAL ANSWER: 1912, 1945, 1989
        
        Example bad answers (don't do these):
        - Based on my analysis, the answer is 42.
        - I think it's Paris because that's the capital of France.
        - The years were 1912, 1945, and 1989.
        
        Remember: ALWAYS include "FINAL ANSWER:" followed by the most concise answer possible.
        """.strip())
                
        # Define tools for each agent
        logger.info("Setting up agent tools")
        perception_tools = [web_search, wiki_search, news_article_search, arvix_search, image_processing, echo]
        execution_tools = [
            multiply, add, subtract, divide, modulus,
            download_file, process_excel_to_text,
            read_text_from_pdf, read_text_from_docx,
            transcribe_audio, youtube_audio_processing,
            extract_article_text, answer_youtube_video_question,
            python_repl_tool, analyze_code, read_code_file, analyze_python_function
        ]
        
        # ─────────────── Agent Creation ───────────────
        logger.info("Creating agents")
        try:
            # Create agents with proper error handling
            PerceptionAgent = create_react_agent(
                model=llm,
                tools=perception_tools,
                prompt=sys_msg,
                state_schema=AgentState,
                name="PerceptionAgent"
            )
            logger.info("Created PerceptionAgent successfully")
            
            # Combined Planning and Execution agent for better efficiency
            ActionAgent = create_react_agent(
                model=llm,
                tools=execution_tools,  # Has access to all execution tools
                prompt=sys_msg,
                state_schema=AgentState,
                name="ActionAgent"
            )
            logger.info("Created ActionAgent successfully")
            
            # Evaluation agent with stricter prompt
            EvaluationAgent = create_react_agent(
                model=llm,
                tools=[],  # No tools needed for evaluation
                prompt=eval_sys_msg,  # Use the specialized evaluation prompt
                state_schema=AgentState,
                name="EvaluationAgent"
            )
            logger.info("Created EvaluationAgent successfully")
        except Exception as e:
            logger.error(f"Error creating agent: {str(e)}")
            import traceback
            logger.error(f"Traceback: {traceback.format_exc()}")
            raise
        
        # Build the StateGraph
        logger.info("Building StateGraph")
        try:
            builder = StateGraph(AgentState)
            
            # Add agent nodes first
            builder.add_node("PerceptionAgent", PerceptionAgent)
            builder.add_node("ActionAgent", ActionAgent)
            builder.add_node("EvaluationAgent", EvaluationAgent)
            
            # Define the flow with a starting edge
            builder.set_entry_point("PerceptionAgent")
            
            # Add the edges for the simpler linear flow
            builder.add_edge("PerceptionAgent", "ActionAgent")
            builder.add_edge("ActionAgent", "EvaluationAgent")
            
            # Set EvaluationAgent as the end node
            builder.set_finish_point("EvaluationAgent")
            
            logger.info("Compiling StateGraph")
            return builder.compile()
        except Exception as e:
            logger.error(f"Error building graph: {str(e)}")
            import traceback
            logger.error(f"Traceback: {traceback.format_exc()}")
            raise
    except Exception as e:
        logger.error(f"Overall error in build_graph: {str(e)}")
        import traceback
        logger.error(f"Traceback: {traceback.format_exc()}")
        raise

def get_final_answer(text):
    """Extract just the FINAL ANSWER from the model's response.
    
    Args:
        text: The full text response from the LLM
        
    Returns:
        str: The extracted answer without the "FINAL ANSWER:" prefix
    """
    # Log the raw text for debugging if needed
    logger.debug(f"Extracting answer from: {text[:200]}...")
    
    if not text:
        logger.warning("Empty response received")
        return "No answer provided."
    
    # Method 1: Look for "FINAL ANSWER:" with most comprehensive pattern matching
    pattern = r'(?:^|\n)FINAL ANSWER:\s*(.*?)(?:\n\s*$|$)'
    match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
    if match:
        # Return just the answer part, cleaned up
        logger.debug("Found answer using pattern 1")
        return match.group(1).strip()
    
    # Method 2: Try looking for variations on the final answer format
    for variant in ["FINAL ANSWER:", "FINAL_ANSWER:", "Final Answer:", "Answer:"]:
        lines = text.split('\n')
        for i, line in enumerate(reversed(lines)):
            if variant in line:
                # Extract everything after the variant text
                logger.debug(f"Found answer using variant: {variant}")
                answer = line[line.find(variant) + len(variant):].strip()
                if answer:
                    return answer
                # If the answer is on the next line, return that
                if i > 0:
                    next_line = lines[len(lines) - i]
                    if next_line.strip():
                        return next_line.strip()
    
    # Method 3: Look for phrases that suggest an answer
    for phrase in ["The answer is", "The result is", "We get", "Therefore,", "In conclusion,"]:
        phrase_pos = text.find(phrase)
        if phrase_pos != -1:
            # Try to extract everything after the phrase until the end of the sentence
            sentence_end = text.find(".", phrase_pos)
            if sentence_end != -1:
                logger.debug(f"Found answer using phrase: {phrase}")
                return text[phrase_pos + len(phrase):sentence_end].strip()
    
    # Method 4: Fall back to taking the last paragraph with actual content
    paragraphs = text.strip().split('\n\n')
    for para in reversed(paragraphs):
        para = para.strip()
        if para and not para.startswith("I ") and not para.lower().startswith("to "):
            logger.debug("Using last meaningful paragraph")
            # If paragraph is very long, try to extract a concise answer
            if len(para) > 100:
                sentences = re.split(r'[.!?]', para)
                for sentence in reversed(sentences):
                    sent = sentence.strip()
                    if sent and len(sent) > 5 and not sent.startswith("I "):
                        return sent
            return para
    
    # Method 5: Last resort - just return the last line with content
    lines = text.strip().split('\n')
    for line in reversed(lines):
        line = line.strip()
        if line and len(line) > 3:
            logger.debug("Using last line with content")
            return line
    
    # If everything fails, warn and return the truncated response
    logger.warning("Could not find a properly formatted answer")
    return text[:100] + "..." if len(text) > 100 else text

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="groq")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()

# ─────────────────────────────────────────────── Tool for Code Analysis ───────────────────────────────────────────────────────────────
@tool
def analyze_code(code_string: str) -> str:
    """Analyze a string of code to understand its structure, functionality, and potential issues.

    Args:
        code_string: The code to analyze as a string.

    Returns:
        A structured analysis of the code including functions, classes, and key operations.
    """
    try:
        import ast
        
        # Try to parse with Python's AST module
        try:
            parsed = ast.parse(code_string)
            
            # Extract functions and classes
            functions = [node.name for node in ast.walk(parsed) if isinstance(node, ast.FunctionDef)]
            classes = [node.name for node in ast.walk(parsed) if isinstance(node, ast.ClassDef)]
            imports = [node.names[0].name for node in ast.walk(parsed) if isinstance(node, ast.Import)]
            imports.extend([f"{node.module}.{name.name}" if node.module else name.name 
                           for node in ast.walk(parsed) if isinstance(node, ast.ImportFrom)
                           for name in node.names])
            
            # Count various node types for complexity assessment
            num_loops = len([node for node in ast.walk(parsed) 
                            if isinstance(node, (ast.For, ast.While))])
            num_conditionals = len([node for node in ast.walk(parsed) 
                                   if isinstance(node, (ast.If, ast.IfExp))])
            
            analysis = {
                "language": "Python",
                "functions": functions,
                "classes": classes,
                "imports": imports,
                "complexity": {
                    "functions": len(functions),
                    "classes": len(classes),
                    "loops": num_loops,
                    "conditionals": num_conditionals
                }
            }
            return str(analysis)
        except SyntaxError:
            # If not valid Python, try some simple pattern matching
            if "{" in code_string and "}" in code_string:
                if "function" in code_string or "=>" in code_string:
                    language = "JavaScript/TypeScript"
                elif "func" in code_string or "struct" in code_string:
                    language = "Go or Rust"
                elif "public" in code_string or "private" in code_string or "class" in code_string:
                    language = "Java/C#/C++"
                else:
                    language = "Unknown C-like language"
            elif "<" in code_string and ">" in code_string and ("/>" in code_string or "</"):
                language = "HTML/XML/JSX"
            else:
                language = "Unknown"
                
            return f"Non-Python code detected ({language}). Basic code structure analysis not available."
    except Exception as e:
        return f"Error analyzing code: {str(e)}"

@tool
def read_code_file(file_path: str) -> str:
    """Read a code file and return its contents with proper syntax detection.

    Args:
        file_path: Path to the code file.

    Returns:
        The file contents and detected language.
    """
    try:
        # Check if file exists
        import os
        if not os.path.exists(file_path):
            return f"Error: File '{file_path}' does not exist."
            
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        
        # Try to detect language from extension
        ext = os.path.splitext(file_path)[1].lower()
        
        language_map = {
            '.py': 'Python',
            '.js': 'JavaScript',
            '.ts': 'TypeScript',
            '.html': 'HTML',
            '.css': 'CSS',
            '.java': 'Java',
            '.c': 'C',
            '.cpp': 'C++',
            '.cs': 'C#',
            '.go': 'Go',
            '.rs': 'Rust',
            '.php': 'PHP',
            '.rb': 'Ruby',
            '.sh': 'Shell',
            '.bat': 'Batch',
            '.ps1': 'PowerShell',
            '.sql': 'SQL',
            '.json': 'JSON',
            '.xml': 'XML',
            '.yaml': 'YAML',
            '.yml': 'YAML',
        }
        
        language = language_map.get(ext, 'Unknown')
        
        return f"File content ({language}):\n\n{content}"
    except Exception as e:
        return f"Error reading file: {str(e)}"

@tool
def analyze_python_function(function_name: str, code_string: str) -> str:
    """Extract and analyze a specific function from Python code.
    
    Args:
        function_name: The name of the function to analyze.
        code_string: The complete code containing the function.
        
    Returns:
        Analysis of the function including parameters, return type, and docstring.
    """
    try:
        import ast
        import inspect
        from types import CodeType, FunctionType
        
        # Parse the code string
        parsed = ast.parse(code_string)
        
        # Find the function definition
        function_def = None
        for node in ast.walk(parsed):
            if isinstance(node, ast.FunctionDef) and node.name == function_name:
                function_def = node
                break
        
        if not function_def:
            return f"Function '{function_name}' not found in the provided code."
        
        # Extract parameters
        params = []
        for arg in function_def.args.args:
            param_name = arg.arg
            # Get annotation if it exists
            if arg.annotation:
                if isinstance(arg.annotation, ast.Name):
                    param_type = arg.annotation.id
                elif isinstance(arg.annotation, ast.Attribute):
                    param_type = f"{arg.annotation.value.id}.{arg.annotation.attr}"
                else:
                    param_type = "complex_type"
                params.append(f"{param_name}: {param_type}")
            else:
                params.append(param_name)
        
        # Extract return type if it exists
        return_type = None
        if function_def.returns:
            if isinstance(function_def.returns, ast.Name):
                return_type = function_def.returns.id
            elif isinstance(function_def.returns, ast.Attribute):
                return_type = f"{function_def.returns.value.id}.{function_def.returns.attr}"
            else:
                return_type = "complex_return_type"
        
        # Extract docstring
        docstring = ast.get_docstring(function_def)
        
        # Create a summary
        summary = {
            "function_name": function_name,
            "parameters": params,
            "return_type": return_type,
            "docstring": docstring,
            "decorators": [d.id if isinstance(d, ast.Name) else "complex_decorator" for d in function_def.decorator_list],
            "line_count": len(function_def.body)
        }
        
        # Create a more explicit string representation that ensures key terms are included
        result = f"Function '{function_name}' analysis:\n"
        result += f"- Parameters: {', '.join(params)}\n"
        result += f"- Return type: {return_type or 'None specified'}\n"
        result += f"- Docstring: {docstring or 'None'}\n"
        result += f"- Line count: {len(function_def.body)}"
        
        return result
    except Exception as e:
        return f"Error analyzing function: {str(e)}"

# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
# ─────────────────────────────────────────────── Tool for News Article Retrieval ──────────────────────────────────────────────────────────────────────
# ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

@tool
def news_article_search(query: str, top_k: int = 3) -> Dict[str, str]:
    """Search for and retrieve news articles with robust error handling for news sites.

    Args:
        query: The news topic or keywords to search for.
        top_k: Maximum number of articles to retrieve.

    Returns:
        A dictionary with search results formatted as XML-like document entries.
    """
    # First, get URLs from DuckDuckGo with "news" focus
    results = []
    news_sources = [
        "bbc.com", "reuters.com", "apnews.com", "nasa.gov", 
        "space.com", "universetoday.com", "nature.com", "science.org",
        "scientificamerican.com", "nytimes.com", "theguardian.com"
    ]
    
    # Find news from reliable sources
    try:
        with DDGS() as ddgs:
            search_query = f"{query} site:{' OR site:'.join(news_sources)}"
            for hit in ddgs.text(search_query, safesearch="On", max_results=top_k*2):
                url = hit.get("href") or hit.get("url", "")
                if not url:
                    continue
                
                # Add the search snippet first as a fallback
                result = {
                    "source": url,
                    "page": "",
                    "content": hit.get("body", "")[:250],
                    "title": hit.get("title", "")
                }
                
                # Try to get better content via a more robust method
                try:
                    headers = {
                        "User-Agent": random.choice([
                            "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36",
                            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.0 Safari/605.1.15",
                            "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36"
                        ]),
                        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
                        "Accept-Language": "en-US,en;q=0.5",
                        "Referer": "https://www.google.com/",
                        "DNT": "1",
                        "Connection": "keep-alive",
                        "Upgrade-Insecure-Requests": "1"
                    }
                    
                    # Add a short delay between requests
                    time.sleep(1 + random.random())
                    
                    # Try to use newspaper3k for more reliable article extraction
                    from newspaper import Article
                    article = Article(url)
                    article.download()
                    article.parse()
                    
                    # If we got meaningful content, update the result
                    if article.text and len(article.text) > 100:
                        # Get a summary - first paragraph + some highlights
                        paragraphs = article.text.split('\n\n')
                        first_para = paragraphs[0] if paragraphs else ""
                        summary = first_para[:300]
                        if len(paragraphs) > 1:
                            summary += "... " + paragraphs[1][:200]
                            
                        result["content"] = summary
                        if article.title:
                            result["title"] = article.title
                
                except Exception as article_err:
                    logger.warning(f"Article extraction failed for {url}: {article_err}")
                    # Fallback to simple requests-based extraction
                    try:
                        resp = requests.get(url, timeout=12, headers=headers)
                        resp.raise_for_status()
                        soup = BeautifulSoup(resp.text, "html.parser")
                        
                        # Try to get main content
                        main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
                        
                        if main_content:
                            content = " ".join(main_content.get_text(separator=" ", strip=True).split()[:250])
                            result["content"] = content
                    except Exception as req_err:
                        logger.warning(f"Fallback extraction failed for {url}: {req_err}")
                        # Keep the original snippet as fallback
                
                results.append(result)
                if len(results) >= top_k:
                    break
    
    except Exception as e:
        logger.error(f"News search failed: {e}")
        return format_search_docs([{
            "source": "Error",
            "page": "",
            "content": f"Failed to retrieve news articles for '{query}': {str(e)}"
        }])
    
    if not results:
        # Fallback to regular web search
        logger.info(f"No news results found, falling back to web_search for {query}")
        return web_search(query, top_k)
    
    return format_search_docs(results[:top_k])

# ───────────────────────────────────────────────────────────── Document Chunking Utilities ──────────────────────────────────────────────────────────
def chunk_document(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[str]:
    """
    Split a large document into smaller chunks with overlap to maintain context across chunks.
    
    Args:
        text: The document text to split into chunks
        chunk_size: Maximum size of each chunk in characters
        overlap: Number of characters to overlap between chunks
        
    Returns:
        List of text chunks
    """
    # If text is smaller than chunk_size, return it as is
    if len(text) <= chunk_size:
        return [text]
    
    chunks = []
    start = 0
    
    while start < len(text):
        # Get chunk with overlap
        end = min(start + chunk_size, len(text))
        
        # Try to find sentence boundary for cleaner breaks
        if end < len(text):
            # Look for sentence endings: period, question mark, or exclamation followed by space
            for sentence_end in ['. ', '? ', '! ']:
                last_period = text[start:end].rfind(sentence_end)
                if last_period != -1:
                    end = start + last_period + 2  # +2 to include the period and space
                    break
        
        # Add chunk to list
        chunks.append(text[start:end])
        
        # Move start position, accounting for overlap
        start = end - overlap if end < len(text) else len(text)
    
    return chunks

# Document processing utility that uses chunking
def process_large_document(text: str, question: str, llm=None) -> str:
    """
    Process a large document by chunking it and using retrieval to find relevant parts.
    
    Args:
        text: The document text to process
        question: The question being asked about the document
        llm: Optional language model to use (defaults to agent's LLM)
        
    Returns:
        Summarized answer based on relevant chunks
    """
    if not llm:
        llm = RetryingChatGroq(model="deepseek-r1-distill-llama-70b", streaming=False, temperature=0)
    
    # Split document into chunks
    chunks = chunk_document(text)
    
    # If document is small enough, don't bother with retrieval
    if len(chunks) <= 1:
        return text
    
    # For larger documents, create embeddings to find relevant chunks
    try:
        from langchain_community.embeddings import HuggingFaceEmbeddings
        from langchain.vectorstores import FAISS
        from langchain.schema import Document
        
        # Create documents with chunk content
        documents = [Document(page_content=chunk, metadata={"chunk_id": i}) for i, chunk in enumerate(chunks)]
        
        # Create embeddings and vector store
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
        vectorstore = FAISS.from_documents(documents, embeddings)
        
        # Get most relevant chunks
        relevant_chunks = vectorstore.similarity_search(question, k=2)  # Get top 2 most relevant chunks
        
        # Join the relevant chunks
        relevant_text = "\n\n".join([doc.page_content for doc in relevant_chunks])
        
        # Option 1: Return relevant chunks directly
        return relevant_text
        
        # Option 2: Summarize with LLM (commented out for now)
        # prompt = f"Using only the following information, answer the question: '{question}'\n\nInformation:\n{relevant_text}"
        # response = llm.invoke([HumanMessage(content=prompt)])
        # return response.content
    
    except Exception as e:
        # Fall back to first chunk if retrieval fails
        logger.warning(f"Retrieval failed: {e}. Falling back to first chunk.")
        return chunks[0]