Wedyan2023 commited on
Commit
713246d
·
verified ·
1 Parent(s): dea01ac

Delete app3.py

Browse files
Files changed (1) hide show
  1. app3.py +0 -142
app3.py DELETED
@@ -1,142 +0,0 @@
1
- # it work but not well
2
- import numpy as np
3
- import streamlit as st
4
- from openai import OpenAI
5
- import os
6
- import sys
7
- from dotenv import load_dotenv
8
-
9
- load_dotenv()
10
-
11
- # Initialize the client
12
- client = OpenAI(
13
- base_url="https://api-inference.huggingface.co/v1",
14
- api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here
15
- )
16
-
17
- # Supported models
18
- model_links = {
19
- "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
20
- }
21
-
22
- # Random dog images for error messages
23
- random_dog = [
24
- "0f476473-2d8b-415e-b944-483768418a95.jpg",
25
- "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
26
- "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
27
- "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
28
- ]
29
-
30
- # Reset conversation
31
- def reset_conversation():
32
- st.session_state.conversation = []
33
- st.session_state.messages = []
34
- return None
35
-
36
- # Define the available models
37
- models = [key for key in model_links.keys()]
38
-
39
- # Sidebar for model selection
40
- selected_model = st.sidebar.selectbox("Select Model", models)
41
-
42
- # Temperature slider
43
- temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
44
-
45
- # Reset button
46
- st.sidebar.button('Reset Chat', on_click=reset_conversation)
47
-
48
- # Model description
49
- st.sidebar.write(f"You're now chatting with **{selected_model}**")
50
- st.sidebar.markdown("*Generated content may be inaccurate or false.*")
51
-
52
- # Chat initialization
53
- if "messages" not in st.session_state:
54
- st.session_state.messages = []
55
-
56
- # Display chat messages
57
- for message in st.session_state.messages:
58
- with st.chat_message(message["role"]):
59
- st.markdown(message["content"])
60
-
61
- # Main logic to choose between data generation and data labeling
62
- task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
63
-
64
- if task_choice == "Data Generation":
65
- classification_type = st.selectbox(
66
- "Choose Classification Type",
67
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
68
- )
69
-
70
- if classification_type == "Sentiment Analysis":
71
- st.write("Sentiment Analysis: Positive, Negative, Neutral")
72
- labels = ["Positive", "Negative", "Neutral"]
73
- elif classification_type == "Binary Classification":
74
- label_1 = st.text_input("Enter first class")
75
- label_2 = st.text_input("Enter second class")
76
- labels = [label_1, label_2]
77
- elif classification_type == "Multi-Class Classification":
78
- num_classes = st.slider("How many classes?", 3, 10, 3)
79
- labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
80
-
81
- domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
82
- if domain == "Custom":
83
- domain = st.text_input("Specify custom domain")
84
-
85
- min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
86
- max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
87
-
88
- few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
89
- if few_shot == "Yes":
90
- num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
91
- few_shot_examples = [
92
- {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
93
- for i in range(num_examples)
94
- ]
95
- else:
96
- few_shot_examples = []
97
-
98
- # Ask the user how many examples they need
99
- num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)
100
-
101
- # System prompt generation
102
- system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
103
- if few_shot_examples:
104
- system_prompt += "Use the following few-shot examples as a reference:\n"
105
- for example in few_shot_examples:
106
- system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
107
- system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
108
- system_prompt += "Think step by step while generating the examples."
109
-
110
- st.write("System Prompt:")
111
- st.code(system_prompt)
112
-
113
- if st.button("Generate Examples"):
114
- # Generate examples by concatenating all inputs and sending it to the model
115
- with st.spinner("Generating..."):
116
- st.session_state.messages.append({"role": "system", "content": system_prompt})
117
-
118
- try:
119
- stream = client.chat.completions.create(
120
- model=model_links[selected_model],
121
- messages=[
122
- {"role": m["role"], "content": m["content"]}
123
- for m in st.session_state.messages
124
- ],
125
- temperature=temp_values,
126
- stream=True,
127
- max_tokens=3000,
128
- )
129
- response = st.write_stream(stream)
130
- except Exception as e:
131
- response = "Error during generation."
132
- random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
133
- st.image(random_dog_pick)
134
- st.write(e)
135
-
136
- st.session_state.messages.append({"role": "assistant", "content": response})
137
-
138
- else:
139
- # Data labeling workflow (for future implementation based on classification)
140
- st.write("Data Labeling functionality will go here.")
141
-
142
-