Spaces:
Sleeping
Sleeping
Update app104.py
Browse files
app104.py
CHANGED
|
@@ -31,73 +31,73 @@ client = OpenAI(
|
|
| 31 |
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 32 |
# import torch
|
| 33 |
|
| 34 |
-
# Model selection dropdown
|
| 35 |
-
selected_model = st.selectbox(
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
| 45 |
|
| 46 |
-
@st.cache_resource # Cache the model to prevent reloading
|
| 47 |
-
def load_model(model_name):
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Load the selected model with optimizations
|
| 72 |
-
if selected_model:
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# Function to generate text
|
| 82 |
-
def generate_response(prompt, model, tokenizer):
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
############################################################
|
| 102 |
|
| 103 |
####new
|
|
@@ -251,7 +251,77 @@ with st.sidebar:
|
|
| 251 |
# key='model_select'
|
| 252 |
# )
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
# model = AutoModelForCausalLM.from_pretrained(
|
| 257 |
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
|
| 31 |
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 32 |
# import torch
|
| 33 |
|
| 34 |
+
# # Model selection dropdown
|
| 35 |
+
# selected_model = st.selectbox(
|
| 36 |
+
# "Select Model",
|
| 37 |
+
# ["meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
| 38 |
+
# "meta-llama/Llama-3.3-70B-Instruct",
|
| 39 |
+
# "meta-llama/Llama-3.2-3B-Instruct",
|
| 40 |
+
# "meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 41 |
+
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 42 |
+
# "meta-llama/Llama-3.1-70B-Instruct"],
|
| 43 |
+
# key='model_select'
|
| 44 |
+
# )
|
| 45 |
|
| 46 |
+
# @st.cache_resource # Cache the model to prevent reloading
|
| 47 |
+
# def load_model(model_name):
|
| 48 |
+
# try:
|
| 49 |
+
# # Optimized model loading configuration
|
| 50 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
+
# model_name,
|
| 52 |
+
# torch_dtype=torch.float16, # Use half precision
|
| 53 |
+
# device_map="auto", # Automatic device mapping
|
| 54 |
+
# load_in_8bit=True, # Enable 8-bit quantization
|
| 55 |
+
# low_cpu_mem_usage=True, # Optimize CPU memory usage
|
| 56 |
+
# max_memory={0: "10GB"} # Limit GPU memory usage
|
| 57 |
+
# )
|
| 58 |
|
| 59 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 60 |
+
# model_name,
|
| 61 |
+
# padding_side="left",
|
| 62 |
+
# truncation_side="left"
|
| 63 |
+
# )
|
| 64 |
|
| 65 |
+
# return model, tokenizer
|
| 66 |
|
| 67 |
+
# except Exception as e:
|
| 68 |
+
# st.error(f"Error loading model: {str(e)}")
|
| 69 |
+
# return None, None
|
| 70 |
+
|
| 71 |
+
# # Load the selected model with optimizations
|
| 72 |
+
# if selected_model:
|
| 73 |
+
# model, tokenizer = load_model(selected_model)
|
| 74 |
+
|
| 75 |
+
# # Check if model loaded successfully
|
| 76 |
+
# if model is not None:
|
| 77 |
+
# st.success(f"Successfully loaded {selected_model}")
|
| 78 |
+
# else:
|
| 79 |
+
# st.warning("Please select a different model or check your hardware capabilities")
|
| 80 |
+
|
| 81 |
+
# # Function to generate text
|
| 82 |
+
# def generate_response(prompt, model, tokenizer):
|
| 83 |
+
# try:
|
| 84 |
+
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 85 |
|
| 86 |
+
# with torch.no_grad():
|
| 87 |
+
# outputs = model.generate(
|
| 88 |
+
# inputs["input_ids"],
|
| 89 |
+
# max_length=256,
|
| 90 |
+
# num_return_sequences=1,
|
| 91 |
+
# temperature=0.7,
|
| 92 |
+
# do_sample=True,
|
| 93 |
+
# pad_token_id=tokenizer.pad_token_id
|
| 94 |
+
# )
|
| 95 |
|
| 96 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 97 |
+
# return response
|
| 98 |
|
| 99 |
+
# except Exception as e:
|
| 100 |
+
# return f"Error generating response: {str(e)}"
|
| 101 |
############################################################
|
| 102 |
|
| 103 |
####new
|
|
|
|
| 251 |
# key='model_select'
|
| 252 |
# )
|
| 253 |
|
| 254 |
+
#################new oooo
|
| 255 |
+
|
| 256 |
+
# Model selection dropdown
|
| 257 |
+
selected_model = st.selectbox(
|
| 258 |
+
"Select Model",
|
| 259 |
+
[#"meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
| 260 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 261 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
| 262 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 263 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 264 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 265 |
+
"meta-llama/Llama-3.1-70B-Instruct"],
|
| 266 |
+
key='model_select'
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
@st.cache_resource # Cache the model to prevent reloading
|
| 270 |
+
def load_model(model_name):
|
| 271 |
+
try:
|
| 272 |
+
# Optimized model loading configuration
|
| 273 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 274 |
+
model_name,
|
| 275 |
+
torch_dtype=torch.float16, # Use half precision
|
| 276 |
+
device_map="auto", # Automatic device mapping
|
| 277 |
+
load_in_8bit=True, # Enable 8-bit quantization
|
| 278 |
+
low_cpu_mem_usage=True, # Optimize CPU memory usage
|
| 279 |
+
max_memory={0: "10GB"} # Limit GPU memory usage
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 283 |
+
model_name,
|
| 284 |
+
padding_side="left",
|
| 285 |
+
truncation_side="left"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
return model, tokenizer
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
st.error(f"Error loading model: {str(e)}")
|
| 292 |
+
return None, None
|
| 293 |
+
|
| 294 |
+
# Load the selected model with optimizations
|
| 295 |
+
if selected_model:
|
| 296 |
+
model, tokenizer = load_model(selected_model)
|
| 297 |
+
|
| 298 |
+
# Check if model loaded successfully
|
| 299 |
+
if model is not None:
|
| 300 |
+
st.success(f"Successfully loaded {selected_model}")
|
| 301 |
+
else:
|
| 302 |
+
st.warning("Please select a different model or check your hardware capabilities")
|
| 303 |
|
| 304 |
+
# Function to generate text
|
| 305 |
+
def generate_response(prompt, model, tokenizer):
|
| 306 |
+
try:
|
| 307 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 308 |
+
|
| 309 |
+
with torch.no_grad():
|
| 310 |
+
outputs = model.generate(
|
| 311 |
+
inputs["input_ids"],
|
| 312 |
+
max_length=256,
|
| 313 |
+
num_return_sequences=1,
|
| 314 |
+
temperature=0.7,
|
| 315 |
+
do_sample=True,
|
| 316 |
+
pad_token_id=tokenizer.pad_token_id
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 320 |
+
return response
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
return f"Error generating response: {str(e)}"
|
| 324 |
+
################
|
| 325 |
|
| 326 |
# model = AutoModelForCausalLM.from_pretrained(
|
| 327 |
# "meta-llama/Meta-Llama-3-8B-Instruct",
|