Wedyan2023 commited on
Commit
d6854a8
·
verified ·
1 Parent(s): 89c24fe

Delete app7.py

Browse files
Files changed (1) hide show
  1. app7.py +0 -184
app7.py DELETED
@@ -1,184 +0,0 @@
1
- import os
2
- import streamlit as st
3
- from openai import OpenAI
4
- from dotenv import load_dotenv
5
- from langchain_core.prompts import PromptTemplate
6
-
7
- # Load environment variables
8
- load_dotenv()
9
- ##openai_api_key = os.getenv("OPENAI_API_KEY")
10
-
11
- # Initialize the client
12
- client = OpenAI(
13
- base_url="https://api-inference.huggingface.co/v1",
14
- api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
15
- )
16
-
17
-
18
- # Initialize the OpenAI client
19
- ##client = OpenAI(
20
- ##base_url="https://api-inference.huggingface.co/v1",
21
- ##api_key=openai_api_key
22
- ##)
23
-
24
- # Define reset function for the conversation
25
- def reset_conversation():
26
- st.session_state.conversation = []
27
- st.session_state.messages = []
28
-
29
- # Streamlit interface setup
30
- st.title("🤖 Text Data Generation & Labeling App")
31
- st.sidebar.title("Settings")
32
-
33
- # Sidebar settings
34
- selected_model = st.sidebar.selectbox("Select Model", ["meta-llama/Meta-Llama-3-8B-Instruct"])
35
- temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
36
- st.sidebar.button("Reset Conversation", on_click=reset_conversation)
37
- st.sidebar.write(f"You're now chatting with **{selected_model}**")
38
- st.sidebar.markdown("*Note: Generated content may be inaccurate or false.*")
39
-
40
- # Initialize conversation state
41
- if "messages" not in st.session_state:
42
- st.session_state.messages = []
43
-
44
- # Display conversation
45
- for message in st.session_state.messages:
46
- with st.chat_message(message["role"]):
47
- st.markdown(message["content"])
48
-
49
- # Main logic: choose between Data Generation and Data Labeling
50
- task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
51
-
52
- if task_choice == "Data Generation":
53
- classification_type = st.selectbox(
54
- "Choose Classification Type",
55
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
56
- )
57
-
58
- if classification_type == "Sentiment Analysis":
59
- labels = ["Positive", "Negative", "Neutral"]
60
- elif classification_type == "Binary Classification":
61
- label_1 = st.text_input("Enter first class")
62
- label_2 = st.text_input("Enter second class")
63
- labels = [label_1, label_2]
64
- else: # Multi-Class Classification
65
- num_classes = st.slider("How many classes?", 3, 10, 3)
66
- labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
67
-
68
- domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
69
- if domain == "Custom":
70
- domain = st.text_input("Specify custom domain")
71
-
72
- min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
73
- max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
74
-
75
- use_few_shot = st.radio("Use few-shot examples?", ["Yes", "No"])
76
- few_shot_examples = []
77
- if use_few_shot == "Yes":
78
- num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
79
- for i in range(num_examples):
80
- content = st.text_area(f"Example {i+1} Content")
81
- label = st.selectbox(f"Example {i+1} Label", labels)
82
- few_shot_examples.append({"content": content, "label": label})
83
-
84
- num_to_generate = st.number_input("Number of examples to generate", 1, 100, 10)
85
- user_prompt = st.text_area("Enter additional instructions", "")
86
-
87
- # Construct the LangChain prompt
88
- prompt_template = PromptTemplate(
89
- input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
90
- template=(
91
- "You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
92
- "Use the following parameters:\n"
93
- "- Number of examples: {num_examples}\n"
94
- "- Word range: {min_words}-{max_words}\n"
95
- "- Labels: {labels}\n"
96
- "{user_prompt}"
97
- )
98
- )
99
- system_prompt = prompt_template.format(
100
- classification_type=classification_type,
101
- domain=domain,
102
- num_examples=num_to_generate,
103
- min_words=min_words,
104
- max_words=max_words,
105
- labels=", ".join(labels),
106
- user_prompt=user_prompt
107
- )
108
-
109
- st.write("System Prompt:")
110
- st.code(system_prompt)
111
-
112
- if st.button("Generate Examples"):
113
- with st.spinner("Generating..."):
114
- st.session_state.messages.append({"role": "system", "content": system_prompt})
115
- try:
116
- stream = client.chat.completions.create(
117
- model=selected_model,
118
- messages=[{"role": "system", "content": system_prompt}],
119
- temperature=temperature,
120
- stream=True,
121
- max_tokens=3000,
122
- )
123
- response = st.write_stream(stream)
124
- st.session_state.messages.append({"role": "assistant", "content": response})
125
- except Exception as e:
126
- st.error("An error occurred during generation.")
127
- st.error(f"Details: {e}")
128
-
129
- elif task_choice == "Data Labeling":
130
- # Labeling logic
131
- labeling_type = st.selectbox(
132
- "Classification Type for Labeling",
133
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
134
- )
135
-
136
- if labeling_type == "Sentiment Analysis":
137
- labels = ["Positive", "Negative", "Neutral"]
138
- elif labeling_type == "Binary Classification":
139
- label_1 = st.text_input("First label for classification")
140
- label_2 = st.text_input("Second label for classification")
141
- labels = [label_1, label_2]
142
- else: # Multi-Class Classification
143
- num_classes = st.slider("Number of labels", 3, 10, 3)
144
- labels = [st.text_input(f"Label {i+1}") for i in range(num_classes)]
145
-
146
- use_few_shot_labeling = st.radio("Add few-shot examples for labeling?", ["Yes", "No"])
147
- few_shot_labeling_examples = []
148
- if use_few_shot_labeling == "Yes":
149
- num_labeling_examples = st.slider("Number of few-shot labeling examples", 1, 5, 1)
150
- for i in range(num_labeling_examples):
151
- content = st.text_area(f"Labeling Example {i+1} Content")
152
- label = st.selectbox(f"Label for Example {i+1}", labels)
153
- few_shot_labeling_examples.append({"content": content, "label": label})
154
-
155
- text_to_classify = st.text_area("Enter text to classify")
156
-
157
- if st.button("Classify Text"):
158
- if text_to_classify:
159
- labeling_prompt = (
160
- f"You are an expert in {labeling_type.lower()} classification. Classify this text using: {', '.join(labels)}.\n\n"
161
- )
162
- if few_shot_labeling_examples:
163
- labeling_prompt += "Example classifications:\n"
164
- for ex in few_shot_labeling_examples:
165
- labeling_prompt += f"Text: {ex['content']} - Label: {ex['label']}\n"
166
- labeling_prompt += f"\nClassify this: {text_to_classify}"
167
-
168
- with st.spinner("Classifying..."):
169
- st.session_state.messages.append({"role": "system", "content": labeling_prompt})
170
- try:
171
- stream = client.chat.completions.create(
172
- model=selected_model,
173
- messages=[{"role": "system", "content": labeling_prompt}],
174
- temperature=temperature,
175
- stream=True,
176
- max_tokens=3000,
177
- )
178
- labeling_response = st.write_stream(stream)
179
- st.write("Label:", labeling_response)
180
- except Exception as e:
181
- st.error("An error occurred during classification.")
182
- st.error(f"Details: {e}")
183
- else:
184
- st.warning("Please enter text to classify.")