Spaces:
Sleeping
Sleeping
Delete app7.py
Browse files
app7.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
from openai import OpenAI
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from langchain_core.prompts import PromptTemplate
|
6 |
-
|
7 |
-
# Load environment variables
|
8 |
-
load_dotenv()
|
9 |
-
##openai_api_key = os.getenv("OPENAI_API_KEY")
|
10 |
-
|
11 |
-
# Initialize the client
|
12 |
-
client = OpenAI(
|
13 |
-
base_url="https://api-inference.huggingface.co/v1",
|
14 |
-
api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
# Initialize the OpenAI client
|
19 |
-
##client = OpenAI(
|
20 |
-
##base_url="https://api-inference.huggingface.co/v1",
|
21 |
-
##api_key=openai_api_key
|
22 |
-
##)
|
23 |
-
|
24 |
-
# Define reset function for the conversation
|
25 |
-
def reset_conversation():
|
26 |
-
st.session_state.conversation = []
|
27 |
-
st.session_state.messages = []
|
28 |
-
|
29 |
-
# Streamlit interface setup
|
30 |
-
st.title("🤖 Text Data Generation & Labeling App")
|
31 |
-
st.sidebar.title("Settings")
|
32 |
-
|
33 |
-
# Sidebar settings
|
34 |
-
selected_model = st.sidebar.selectbox("Select Model", ["meta-llama/Meta-Llama-3-8B-Instruct"])
|
35 |
-
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
|
36 |
-
st.sidebar.button("Reset Conversation", on_click=reset_conversation)
|
37 |
-
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
38 |
-
st.sidebar.markdown("*Note: Generated content may be inaccurate or false.*")
|
39 |
-
|
40 |
-
# Initialize conversation state
|
41 |
-
if "messages" not in st.session_state:
|
42 |
-
st.session_state.messages = []
|
43 |
-
|
44 |
-
# Display conversation
|
45 |
-
for message in st.session_state.messages:
|
46 |
-
with st.chat_message(message["role"]):
|
47 |
-
st.markdown(message["content"])
|
48 |
-
|
49 |
-
# Main logic: choose between Data Generation and Data Labeling
|
50 |
-
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
|
51 |
-
|
52 |
-
if task_choice == "Data Generation":
|
53 |
-
classification_type = st.selectbox(
|
54 |
-
"Choose Classification Type",
|
55 |
-
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
56 |
-
)
|
57 |
-
|
58 |
-
if classification_type == "Sentiment Analysis":
|
59 |
-
labels = ["Positive", "Negative", "Neutral"]
|
60 |
-
elif classification_type == "Binary Classification":
|
61 |
-
label_1 = st.text_input("Enter first class")
|
62 |
-
label_2 = st.text_input("Enter second class")
|
63 |
-
labels = [label_1, label_2]
|
64 |
-
else: # Multi-Class Classification
|
65 |
-
num_classes = st.slider("How many classes?", 3, 10, 3)
|
66 |
-
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
|
67 |
-
|
68 |
-
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
|
69 |
-
if domain == "Custom":
|
70 |
-
domain = st.text_input("Specify custom domain")
|
71 |
-
|
72 |
-
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
|
73 |
-
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
|
74 |
-
|
75 |
-
use_few_shot = st.radio("Use few-shot examples?", ["Yes", "No"])
|
76 |
-
few_shot_examples = []
|
77 |
-
if use_few_shot == "Yes":
|
78 |
-
num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
|
79 |
-
for i in range(num_examples):
|
80 |
-
content = st.text_area(f"Example {i+1} Content")
|
81 |
-
label = st.selectbox(f"Example {i+1} Label", labels)
|
82 |
-
few_shot_examples.append({"content": content, "label": label})
|
83 |
-
|
84 |
-
num_to_generate = st.number_input("Number of examples to generate", 1, 100, 10)
|
85 |
-
user_prompt = st.text_area("Enter additional instructions", "")
|
86 |
-
|
87 |
-
# Construct the LangChain prompt
|
88 |
-
prompt_template = PromptTemplate(
|
89 |
-
input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
|
90 |
-
template=(
|
91 |
-
"You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
|
92 |
-
"Use the following parameters:\n"
|
93 |
-
"- Number of examples: {num_examples}\n"
|
94 |
-
"- Word range: {min_words}-{max_words}\n"
|
95 |
-
"- Labels: {labels}\n"
|
96 |
-
"{user_prompt}"
|
97 |
-
)
|
98 |
-
)
|
99 |
-
system_prompt = prompt_template.format(
|
100 |
-
classification_type=classification_type,
|
101 |
-
domain=domain,
|
102 |
-
num_examples=num_to_generate,
|
103 |
-
min_words=min_words,
|
104 |
-
max_words=max_words,
|
105 |
-
labels=", ".join(labels),
|
106 |
-
user_prompt=user_prompt
|
107 |
-
)
|
108 |
-
|
109 |
-
st.write("System Prompt:")
|
110 |
-
st.code(system_prompt)
|
111 |
-
|
112 |
-
if st.button("Generate Examples"):
|
113 |
-
with st.spinner("Generating..."):
|
114 |
-
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
115 |
-
try:
|
116 |
-
stream = client.chat.completions.create(
|
117 |
-
model=selected_model,
|
118 |
-
messages=[{"role": "system", "content": system_prompt}],
|
119 |
-
temperature=temperature,
|
120 |
-
stream=True,
|
121 |
-
max_tokens=3000,
|
122 |
-
)
|
123 |
-
response = st.write_stream(stream)
|
124 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
125 |
-
except Exception as e:
|
126 |
-
st.error("An error occurred during generation.")
|
127 |
-
st.error(f"Details: {e}")
|
128 |
-
|
129 |
-
elif task_choice == "Data Labeling":
|
130 |
-
# Labeling logic
|
131 |
-
labeling_type = st.selectbox(
|
132 |
-
"Classification Type for Labeling",
|
133 |
-
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
134 |
-
)
|
135 |
-
|
136 |
-
if labeling_type == "Sentiment Analysis":
|
137 |
-
labels = ["Positive", "Negative", "Neutral"]
|
138 |
-
elif labeling_type == "Binary Classification":
|
139 |
-
label_1 = st.text_input("First label for classification")
|
140 |
-
label_2 = st.text_input("Second label for classification")
|
141 |
-
labels = [label_1, label_2]
|
142 |
-
else: # Multi-Class Classification
|
143 |
-
num_classes = st.slider("Number of labels", 3, 10, 3)
|
144 |
-
labels = [st.text_input(f"Label {i+1}") for i in range(num_classes)]
|
145 |
-
|
146 |
-
use_few_shot_labeling = st.radio("Add few-shot examples for labeling?", ["Yes", "No"])
|
147 |
-
few_shot_labeling_examples = []
|
148 |
-
if use_few_shot_labeling == "Yes":
|
149 |
-
num_labeling_examples = st.slider("Number of few-shot labeling examples", 1, 5, 1)
|
150 |
-
for i in range(num_labeling_examples):
|
151 |
-
content = st.text_area(f"Labeling Example {i+1} Content")
|
152 |
-
label = st.selectbox(f"Label for Example {i+1}", labels)
|
153 |
-
few_shot_labeling_examples.append({"content": content, "label": label})
|
154 |
-
|
155 |
-
text_to_classify = st.text_area("Enter text to classify")
|
156 |
-
|
157 |
-
if st.button("Classify Text"):
|
158 |
-
if text_to_classify:
|
159 |
-
labeling_prompt = (
|
160 |
-
f"You are an expert in {labeling_type.lower()} classification. Classify this text using: {', '.join(labels)}.\n\n"
|
161 |
-
)
|
162 |
-
if few_shot_labeling_examples:
|
163 |
-
labeling_prompt += "Example classifications:\n"
|
164 |
-
for ex in few_shot_labeling_examples:
|
165 |
-
labeling_prompt += f"Text: {ex['content']} - Label: {ex['label']}\n"
|
166 |
-
labeling_prompt += f"\nClassify this: {text_to_classify}"
|
167 |
-
|
168 |
-
with st.spinner("Classifying..."):
|
169 |
-
st.session_state.messages.append({"role": "system", "content": labeling_prompt})
|
170 |
-
try:
|
171 |
-
stream = client.chat.completions.create(
|
172 |
-
model=selected_model,
|
173 |
-
messages=[{"role": "system", "content": labeling_prompt}],
|
174 |
-
temperature=temperature,
|
175 |
-
stream=True,
|
176 |
-
max_tokens=3000,
|
177 |
-
)
|
178 |
-
labeling_response = st.write_stream(stream)
|
179 |
-
st.write("Label:", labeling_response)
|
180 |
-
except Exception as e:
|
181 |
-
st.error("An error occurred during classification.")
|
182 |
-
st.error(f"Details: {e}")
|
183 |
-
else:
|
184 |
-
st.warning("Please enter text to classify.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|