File size: 7,642 Bytes
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
from nlg.bertscore.bertscore import BertScore
from radgraph import RadGraph
from factual.f1chexbert import F1CheXbert
from sklearn.preprocessing import StandardScaler
from nlg.bleu.bleu import Bleu


def radcliq_bertscore(refs, hyps, model_type='distilroberta-base'):
    """
    Computes BERTScore for each pair of reference and hypothesis.

    Returns:
        np.ndarray of shape (N,) with the BERTScore F1 values per pair.
    """
    # https://github.com/rajpurkarlab/CXR-Report-Metric/blob/9c9ecad39be6cb2be8e75be1d1c50ef8888a3e40/CXRMetric/run_eval.py#L103
    scorer = BertScore(
        model_type=model_type,
        rescale_with_baseline=True,
        idf=False,
        num_layers=None
    )
    _, scores = scorer(refs, hyps)
    # scores is a list of torch.Tensor, convert to numpy
    return np.array([float(s) for s in scores])


def compute_f1(test_set, retrieved_set):
    """Helper to compute F1 between two sets of items."""
    tp = len(test_set & retrieved_set)
    fp = len(retrieved_set) - tp
    fn = len(test_set) - tp
    precision = tp / (tp + fp) if (tp + fp) else 0.0
    recall = tp / (tp + fn) if (tp + fn) else 0.0
    return 2 * precision * recall / (precision + recall) if (precision + recall) else 0.0


def extract_entities(output):
    """Extracts set of (tokens, label) tuples from RadGraph output."""
    return {(tuple(ent["tokens"]), ent["label"]) for ent in output.get("entities", {}).values()}


def extract_relations(output):
    """Extracts set of (src, tgt, relation) tuples from RadGraph output."""
    rels = set()
    entities = output.get("entities", {})
    for ent in entities.values():
        src = (tuple(ent["tokens"]), ent["label"])
        for rel_type, tgt_idx in ent.get("relations", []):
            tgt_ent = entities.get(tgt_idx)
            if tgt_ent:
                tgt = (tuple(tgt_ent["tokens"]), tgt_ent["label"])  
                rels.add((src, tgt, rel_type))
    return rels


def radcliq_radgraph_scores(refs, hyps, model_name='radgraph'):
    """
    Computes entity and relation F1 via RadGraph for each report pair and returns their average.

    Returns:
        np.ndarray of shape (N,) with (entity_f1 + relation_f1)/2 per pair.
    """
    rad = RadGraph(model_type=model_name)
    gt_outputs = rad(refs)
    pred_outputs = rad(hyps)
    scores = []
    for i in range(len(refs)):
        gt_out = gt_outputs.get(str(i), {})
        pred_out = pred_outputs.get(str(i), {})

        ents_gt = extract_entities(gt_out)
        ents_pred = extract_entities(pred_out)
        rels_gt = extract_relations(gt_out)
        rels_pred = extract_relations(pred_out)

        ent_f1 = compute_f1(ents_gt, ents_pred)
        rel_f1 = compute_f1(rels_gt, rels_pred)
        scores.append((ent_f1 + rel_f1) / 2)
    return np.array(scores)


def semantic_embedding_scores(refs, hyps, device='cpu'):
    """
    Computes per-pair cosine similarity between embeddings from CheXbert labeler.

    Returns:
        np.ndarray of shape (N,) with cosine similarities per pair.
    """
    if len(refs) != len(hyps):
        raise ValueError(f"refs ({len(refs)}) and hyps ({len(hyps)}) must be same length")
    labeler = F1CheXbert(device=device)
    gt_embs = np.vstack(labeler.get_embeddings(refs))
    pred_embs = np.vstack(labeler.get_embeddings(hyps))
    # https://github.com/rajpurkarlab/CXR-Report-Metric/blob/9c9ecad39be6cb2be8e75be1d1c50ef8888a3e40/CXRMetric/run_eval.py#L126
    dot = np.einsum("nd,nd->n", gt_embs, pred_embs)
    norms = np.linalg.norm(gt_embs, axis=1) * np.linalg.norm(pred_embs, axis=1)
    with np.errstate(divide='ignore', invalid='ignore'):
        sims = np.where(norms > 0, dot / norms, 0.0)
    return sims


def radcliq_scores(refs, hyps, 
                   bert_model='distilroberta-base', 
                   radgraph_model='radgraph'):
    """
    Computes BERTScore, RadGraph score, and semantic embedding similarity for each ref-hyp pair.

    Args:
        refs: List of reference report strings.
        hyps: List of hypothesis report strings.
        device: Device for embedding model ('cpu' or 'cuda').
        bert_model: HuggingFace model name for BERTScore.
        radgraph_model: Model name for RadGraph inference.

    Returns:
        Dict with keys 'bertscore', 'radgraph', 'semantic', each mapping to a numpy array of shape (N,).
    """
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    # BERTScore
    bert_scores = radcliq_bertscore(refs, hyps, model_type=bert_model)
    # RadGraph
    rad_scores = radcliq_radgraph_scores(refs, hyps, model_name=radgraph_model)
    # Semantic embeddings
    sem_scores = semantic_embedding_scores(refs, hyps, device=device)

    # BLEU
    bleu_scorer = Bleu()
    bleu_scores = bleu_scorer(refs, hyps)[1]

    return {
        'bertscore': bert_scores,
        'radgraph': rad_scores,
        'semb_score': sem_scores,
        'bleu_score': bleu_scores
    }



class CompositeMetric:
    def __init__(self):
        scaler = StandardScaler(with_mean=True, with_std=True)
        # learnt parameters, infered from 
        # https://github.com/rajpurkarlab/CXR-Report-Metric/blob/main/CXRMetric/run_eval.py#L219
        scaler.mean_            = np.array([0.53792312, 0.61757256, 0.76479421, 0.44738335])
        scaler.scale_           = np.array([0.30282584, 0.22430938, 0.25394391, 0.29892717])
        scaler.var_             = np.array([0.09170349, 0.05031470, 0.06448751, 0.08935745])
        scaler.n_samples_seen_  = 160       # integer
        scaler.n_features_in_   = 4         # integer

        self.scaler = scaler
        self.coefs  = np.array([
                        -3.77083683e-01,   # radgraph weight
                        -3.70300100e-01,   # bertscore weight
                        -2.52616218e-01,   # s-emb weight
                        4.31504841e-12,   # bleu weight
                        2.46655256e-10    # intercept / bias
                    ])
        self.cols   = ["radgraph", "bertscore", "semb_score", "bleu_score"]

    def predict(self, X):
        Xn = self.scaler.transform(X)
        Xn = np.hstack([Xn, np.ones((Xn.shape[0], 1))])
        return Xn @ self.coefs

    def _build_matrix(self, metrics: dict[str, np.ndarray]) -> np.ndarray:
        """Stack features in the canonical column order."""
        return np.column_stack([metrics[c] for c in self.cols])

    def predict(self, refs, hyps) -> np.ndarray:
        """
        Args
        ----
        metrics : dict returned by `radcliq_scores`

        Returns
        -------
        np.ndarray of shape (N,) – RadCliQ-v1 score for each ref/hyp pair.
        """
        metrics = radcliq_scores(refs, hyps)

        X = self._build_matrix(metrics)

        Xn = self.scaler.transform(X)

        # Append bias term
        Xn = np.hstack([Xn, np.ones((Xn.shape[0], 1))])
        scores = Xn @ self.coefs

        return 1/scores.mean(), scores

if __name__ == "__main__":
    refs = [
        "No evidence of pneumothorax following chest tube removal.",
        "There is a left pleural effusion.",
        "There is a left pleural effusion."
    ]
    hyps = [
        "No pneumothorax detected.",
        "Left pleural effusion is present.",
        "No pneumothorax detected.",
    ]

    # Step-1: compute the four individual metrics

    # Step-2: get the RadCliQ-v1 composite
    radcliq = CompositeMetric()
    mean_scores, detail_scores = radcliq.predict(refs, hyps)
    for i, s in enumerate(detail_scores, 1):
        print(f"Pair {i}: RadCliQ-v1 = {s:.4f}")
    
    print(f"RadCliQ-v1 score: {mean_scores:.4f}")