File size: 9,882 Bytes
bad8293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/usr/bin/env python
"""CheXbert evaluation utilities – **device‑safe end‑to‑end**
This is a drop‑in replacement for your previous `f1chexbert.py` **and** for the helper
`SemanticEmbeddingScorer`. All tensors – model weights *and* inputs – are created on
exactly the same device so the ``Expected all tensors to be on the same device``
run‑time error disappears. The public API stays identical, so the rest of your
pipeline does not need to change.
"""
from __future__ import annotations
import os
import warnings
import logging
from typing import List, Sequence, Tuple, Union
import torch
import torch.nn as nn
import numpy as np
from transformers import (
AutoConfig,
BertModel,
BertTokenizer,
)
from sklearn.metrics import (
accuracy_score,
classification_report,
)
from sklearn.metrics._classification import _check_targets
from sklearn.utils.sparsefuncs import count_nonzero
from huggingface_hub import hf_hub_download
from appdirs import user_cache_dir
# -----------------------------------------------------------------------------
# GLOBALS & UTILITIES
# -----------------------------------------------------------------------------
CACHE_DIR = user_cache_dir("chexbert")
warnings.filterwarnings("ignore")
logging.getLogger("urllib3").setLevel(logging.ERROR)
# Helper ----------------------------------------------------------------------
def _generate_attention_masks(batch_ids: torch.LongTensor) -> torch.FloatTensor:
"""Create a padding mask: 1 for real tokens, 0 for pads."""
# batch_ids shape: (B, L)
lengths = (batch_ids != 0).sum(dim=1) # (B,)
max_len = batch_ids.size(1)
idxs = torch.arange(max_len, device=batch_ids.device).unsqueeze(0) # (1, L)
return (idxs < lengths.unsqueeze(1)).float() # (B, L)
# -----------------------------------------------------------------------------
# MODEL COMPONENTS
# -----------------------------------------------------------------------------
class BertLabeler(nn.Module):
"""BERT backbone + 14 small classification heads (CheXbert)."""
def __init__(self, *, device: Union[str, torch.device]):
super().__init__()
if isinstance(device, str):
self.device = torch.device(device)
else:
self.device = device
# 1) Backbone on *CPU* first – we'll move to correct device after weights load
config = AutoConfig.from_pretrained("bert-base-uncased")
self.bert = BertModel(config)
hidden = self.bert.config.hidden_size
# 13 heads with 4‑way logits, + 1 head with 2‑way logits
self.linear_heads = nn.ModuleList([nn.Linear(hidden, 4) for _ in range(13)])
self.linear_heads.append(nn.Linear(hidden, 2))
self.dropout = nn.Dropout(0.1)
# 2) Load checkpoint weights directly onto CPU first -------------------
ckpt_path = hf_hub_download(
repo_id="StanfordAIMI/RRG_scorers",
filename="chexbert.pth",
cache_dir=CACHE_DIR,
)
state = torch.load(ckpt_path, map_location="cpu")["model_state_dict"]
state = {k.replace("module.", ""): v for k, v in state.items()}
self.load_state_dict(state, strict=True)
# 3) NOW move the entire module (recursively) to `self.device` ----------
self.to(self.device)
# freeze ---------------------------------------------------------------
for p in self.parameters():
p.requires_grad = False
# ---------------------------------------------------------------------
# forward helpers
# ---------------------------------------------------------------------
@torch.no_grad()
def cls_logits(self, input_ids: torch.LongTensor) -> List[torch.Tensor]:
"""Returns a list of logits for each head (no softmax)."""
attn = _generate_attention_masks(input_ids)
outputs = self.bert(input_ids=input_ids, attention_mask=attn)
cls_repr = self.dropout(outputs.last_hidden_state[:, 0])
return [head(cls_repr) for head in self.linear_heads]
@torch.no_grad()
def cls_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
"""Returns pooled [CLS] representations (B, hidden_size)."""
attn = _generate_attention_masks(input_ids)
outputs = self.bert(input_ids=input_ids, attention_mask=attn)
return outputs.last_hidden_state[:, 0] # (B, hidden)
# -----------------------------------------------------------------------------
# F1‑CheXbert evaluator
# -----------------------------------------------------------------------------
class F1CheXbert(nn.Module):
"""Generate CheXbert labels + handy evaluation utilities."""
CONDITION_NAMES = [
"Enlarged Cardiomediastinum",
"Cardiomegaly",
"Lung Opacity",
"Lung Lesion",
"Edema",
"Consolidation",
"Pneumonia",
"Atelectasis",
"Pneumothorax",
"Pleural Effusion",
"Pleural Other",
"Fracture",
"Support Devices",
]
NO_FINDING = "No Finding"
TARGET_NAMES = CONDITION_NAMES + [NO_FINDING]
TOP5 = [
"Cardiomegaly",
"Edema",
"Consolidation",
"Atelectasis",
"Pleural Effusion",
]
def __init__(
self,
*,
refs_filename: str | None = None,
hyps_filename: str | None = None,
device: Union[str, torch.device] = "cpu",
):
super().__init__()
# Resolve device -------------------------------------------------------
if isinstance(device, str):
self.device = torch.device(device)
else:
self.device = device
self.refs_filename = refs_filename
self.hyps_filename = hyps_filename
# HuggingFace tokenizer (always CPU, we just move tensors later) -------
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# backbone + heads ------------------------------------------------------
self.model = BertLabeler(device=self.device).eval()
# indices for the TOP‑5 label subset -----------------------------------
self.top5_idx = [self.TARGET_NAMES.index(n) for n in self.TOP5]
# ---------------------------------------------------------------------
# Public helpers
# ---------------------------------------------------------------------
@torch.no_grad()
def get_embeddings(self, reports: Sequence[str]) -> List[np.ndarray]:
"""Return list[np.ndarray] of pooled [CLS] vectors for each report."""
# Tokenise *as a batch* for efficiency
encoding = self.tokenizer(
reports,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt",
)
input_ids = encoding.input_ids.to(self.device)
# (B, hidden)
cls = self.model.cls_embeddings(input_ids)
return [v.cpu().numpy() for v in cls]
@torch.no_grad()
def get_label(self, report: str, mode: str = "rrg") -> List[int]:
"""Return 14‑dim binary vector for the given report."""
input_ids = self.tokenizer(report, truncation=True, max_length=512, return_tensors="pt").input_ids.to(self.device)
preds = [head.argmax(dim=1).item() for head in self.model.cls_logits(input_ids)]
binary = []
if mode == "rrg":
for c in preds:
binary.append(1 if c in {1, 3} else 0)
elif mode == "classification":
for c in preds:
if c == 1:
binary.append(1)
elif c == 2:
binary.append(0)
elif c == 3:
binary.append(-1)
else:
binary.append(0)
else:
raise ValueError(f"Unknown mode: {mode}")
return binary
# ---------------------------------------------------------------------
# Full evaluator – unchanged logic but simplified I/O
# ---------------------------------------------------------------------
def forward(self, hyps: List[str], refs: List[str]):
"""Return (accuracy, per‑example‑accuracy, full classification reports)."""
# Reference labels -----------------------------------------------------
if self.refs_filename and os.path.exists(self.refs_filename):
with open(self.refs_filename) as f:
refs_chexbert = [eval(line) for line in f]
else:
refs_chexbert = [self.get_label(r) for r in refs]
if self.refs_filename:
with open(self.refs_filename, "w") as f:
f.write("\n".join(map(str, refs_chexbert)))
# Hypothesis labels ----------------------------------------------------
hyps_chexbert = [self.get_label(h) for h in hyps]
if self.hyps_filename:
with open(self.hyps_filename, "w") as f:
f.write("\n".join(map(str, hyps_chexbert)))
# TOP‑5 subset arrays --------------------------------------------------
refs5 = [np.array(r)[self.top5_idx] for r in refs_chexbert]
hyps5 = [np.array(h)[self.top5_idx] for h in hyps_chexbert]
# overall accuracy -----------------------------------------------------
accuracy = accuracy_score(refs5, hyps5)
_, y_true, y_pred = _check_targets(refs5, hyps5)
pe_accuracy = (count_nonzero(y_true - y_pred, axis=1) == 0).astype(float)
# full classification reports -----------------------------------------
cr = classification_report(refs_chexbert, hyps_chexbert, target_names=self.TARGET_NAMES, output_dict=True)
cr5 = classification_report(refs5, hyps5, target_names=self.TOP5, output_dict=True)
return accuracy, pe_accuracy, cr, cr5
|