File size: 17,709 Bytes
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d48a26
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9998f52
73c92e0
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9998f52
 
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9998f52
bad8293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import re
import torch
import torch.distributed as dist
import pandas as pd
from datasets import Dataset
from datasets.distributed import split_dataset_by_node
import os
from tqdm import tqdm
import numpy as np
import time
import sys
import warnings
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.utils import logging

# Import necessary functions (ensure these are available in your environment)
from factual.green_score.utils import (
    gather_processes,
    make_prompt,
    clean_responses,
    compute_largest_cluster,
    flatten_values_lists_of_list_dicts_to_dict,
)

# Set the logging level for the transformers library to ERROR to suppress benign warnings
logging.get_logger("transformers").setLevel(logging.ERROR)

def get_rank():
    if not dist.is_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def tqdm_on_main(*args, **kwargs):
    if is_main_process():
        print("==== Beginning Inference ====")
        return tqdm(*args, **kwargs)
    else:
        return kwargs.get("iterable", None)


class GREEN:
    def __init__(self, model_name, output_dir=".", cpu=False):
        super().__init__()
        warnings.filterwarnings(
            "ignore", message="A decoder-only architecture is being used*"
        )
        from sklearn.exceptions import ConvergenceWarning

        warnings.filterwarnings(
            "ignore",
            category=ConvergenceWarning,
            message="Number of distinct clusters.*",
        )
        warnings.filterwarnings(
            "ignore",
            category=FutureWarning,
            module="transformers.tokenization_utils_base",
        )
        cpu = cpu or not torch.cuda.is_available()
        self.device = torch.device("cpu" if cpu else "cuda")
        self.cpu = cpu
        self.model_name = model_name.split("/")[-1]
        self.output_dir = output_dir
        self.batch_size = 4
        self.max_length = 2048
        self.categories = [
            "Clinically Significant Errors",
            "Clinically Insignificant Errors",
            "Matched Findings",
        ]
        self.sub_categories = [
            "(a) False report of a finding in the candidate",
            "(b) Missing a finding present in the reference",
            "(c) Misidentification of a finding's anatomic location/position",
            "(d) Misassessment of the severity of a finding",
            "(e) Mentioning a comparison that isn't in the reference",
            "(f) Omitting a comparison detailing a change from a prior study",
        ]
        self.prompts = None
        self.completions = None
        self.green_scores = None
        self.error_counts = None

        if torch.cuda.is_available() and torch.cuda.device_count() > 1 and not self.cpu:
            if not dist.is_initialized():
                dist.init_process_group(
                    backend="nccl",
                )
                torch.cuda.set_device(dist.get_rank())
                if dist.get_rank() == 0:
                    print(
                        "Distributed training with", torch.cuda.device_count(), "GPUs"
                    )

        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=False if "Phi" in model_name else True,
            device_map=(
                {"": f"cuda:{torch.cuda.current_device()}"}
                if (not self.cpu and torch.cuda.is_available())
                else {"": "cpu"}
            ),
            torch_dtype=torch.float16,
        )
        self.model.eval()

        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            add_eos_token=True,
            use_fast=True,
            trust_remote_code=True,
            padding_side="left",
        )

        # Set up chat template for chat-style prompts
        chat_template = (
            "{% for message in messages %}\n"
            "{% if message['from'] == 'human' %}\n"
            "{{ '<|user|>\n' + message['value'] + eos_token }}\n"
            "{% elif message['from'] == 'system' %}\n"
            "{{ '<|system|>\n' + message['value'] + eos_token }}\n"
            "{% elif message['from'] == 'gpt' %}\n"
            "{{ '<|assistant|>\n'  + message['value'] + eos_token }}\n"
            "{% endif %}\n"
            "{% if loop.last and add_generation_prompt %}\n"
            "{{ '<|assistant|>' }}\n"
            "{% endif %}\n"
            "{% endfor %}"
        )
        
        self.tokenizer.chat_template = chat_template
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.clean_up_tokenization_spaces = True
        self.tokenizer.padding_side = "left"

    def __call__(self, refs, hyps):
        print("Processing data...making prompts")
        dataset = Dataset.from_dict({"reference": refs, "prediction": hyps})

        dataset = self.process_data(dataset)
        print("Done.")

        self.dataset = dataset

        t = time.time()

        mean, std, green_scores, summary, results_df = self.infer()

        t = time.time() - t
        print("Seconds per example: ", t / len(refs))

        if not is_main_process():
            print(f"Rank {dist.get_rank()} exiting.")
            dist.destroy_process_group()
            sys.exit()

        return mean, std, green_scores, summary, results_df

    def process_data(self, dataset):
        def prompting(examples):
            return {
                "prompt": [
                    make_prompt(r, p)
                    for r, p in zip(examples["reference"], examples["prediction"])
                ]
            }

        dataset = dataset.map(prompting, batched=True)
        return dataset

    @torch.inference_mode()
    def infer(self):
        if torch.cuda.is_available() and torch.cuda.device_count() > 1 and not self.cpu:
            dataset_dist = split_dataset_by_node(
                self.dataset,
                rank=get_rank(),
                world_size=int(os.environ["WORLD_SIZE"]),
            )
            print("Distributed dataset created on rank: ", int(os.environ["RANK"]))
        else:
            dataset_dist = self.dataset

        local_completions = []
        local_references = []

        for batch in tqdm_on_main(
            iterable=dataset_dist.iter(batch_size=self.batch_size),
            total=len(dataset_dist) // self.batch_size,
        ):
            local_references.extend(batch["prompt"])
            local_completions.extend(self.get_response(batch))

        if torch.cuda.is_available() and torch.cuda.device_count() > 1 and not self.cpu:
            self.completions, self.prompts = gather_processes(
                local_completions, local_references
            )
        else:
            self.completions = local_completions
            self.prompts = local_references

        if is_main_process():
            print("==== End Inference ====")

        if len(self.completions) != len(self.prompts):
            print("Length of prompts and completions are not equal!")

        return self.process_results()

    def tokenize_batch_as_chat(self, batch):
        local_rank = self.device
        batch = [
            self.tokenizer.apply_chat_template(
                i, tokenize=False, add_generation_prompt=True
            )
            for i in batch
        ]

        batch = self.tokenizer.batch_encode_plus(
            batch,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=self.max_length,
        ).to(local_rank)

        return batch

    def get_response(self, batch):
        assert "prompt" in batch.keys(), "prompt is not in batch keys"

        batch = [
            [{"from": "human", "value": prompt}, {"from": "gpt", "value": ""}]
            for prompt in batch["prompt"]
        ]

        batch = self.tokenize_batch_as_chat(batch)

        outputs = self.model.generate(
            input_ids=batch["input_ids"],
            attention_mask=batch["attention_mask"],
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            max_length=2048,
            do_sample=False,
            temperature=None,
            top_p=None,
        )

        responses = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)

        response_list = []
        if isinstance(responses, list):
            for response in responses:
                response = clean_responses(response)
                response_list.append(response)
        else:
            responses = clean_responses(responses)
            response_list.append(responses)

        return response_list

    def process_results(self):
        self.green_scores = [
            self.compute_green(response) for response in self.completions
        ]
        self.error_counts = pd.DataFrame(
            [self.compute_error_count(response) for response in self.completions],
            columns=self.sub_categories + ["Matched Findings"],
        )

        results_df = pd.DataFrame(
            {
                "reference": self.dataset["reference"],
                "predictions": self.dataset["prediction"],
                "green_analysis": self.completions,
                "green_score": self.green_scores,
                **self.error_counts,
            }
        )

        mean, std, summary = self.compute_summary()

        return mean, std, self.green_scores, summary, results_df

    def compute_error_count(self, response):
        _, sig_errors = self.parse_error_counts(response, self.categories[0])
        matched_findings, _ = self.parse_error_counts(response, self.categories[2])
        return sig_errors + [matched_findings]

    def compute_green(self, response):
        sig_present, sig_errors = self.parse_error_counts(response, self.categories[0])
        matched_findings, _ = self.parse_error_counts(response, self.categories[2])

        if matched_findings == 0:
            return 0

        if sig_present is None or matched_findings is None:
            return None

        return matched_findings / (matched_findings + sum(sig_errors))

    def parse_error_counts(self, text, category, for_reward=False):
        if category not in self.categories:
            raise ValueError(
                f"Category {category} is not a valid category. Please choose from {self.categories}."
            )

        pattern = rf"\[{category}\]:\s*(.*?)(?:\n\s*\n|\Z)"
        category_text = re.search(pattern, text, re.DOTALL)

        sum_counts = 0
        sub_counts = [0 for i in range(6)]

        if not category_text:
            if for_reward:
                return None, None
            return sum_counts, sub_counts
        if category_text.group(1).startswith("No"):
            return sum_counts, sub_counts

        if category == "Matched Findings":
            counts = re.findall(r"^\b\d+\b(?=\.)", category_text.group(1))
            if len(counts) > 0:
                sum_counts = int(counts[0])
            return sum_counts, sub_counts
        else:
            sub_categories = [s.split(" ", 1)[0] + " " for s in self.sub_categories]
            matches = sorted(re.findall(r"\([a-f]\) .*", category_text.group(1)))

            if len(matches) == 0:
                matches = sorted(re.findall(r"\([1-6]\) .*", category_text.group(1)))
                sub_categories = [
                    f"({i})" + " " for i in range(1, len(self.sub_categories) + 1)
                ]

            for position, sub_category in enumerate(sub_categories):
                for match in range(len(matches)):
                    if matches[match].startswith(sub_category):
                        count = re.findall(r"(?<=: )\b\d+\b(?=\.)", matches[match])
                        if len(count) > 0:
                            sub_counts[position] = int(count[0])
            return sum(sub_counts), sub_counts

    def parse_error_sentences(self, response, category):
        if category not in self.categories:
            raise ValueError(
                f"Category {category} is not a valid category. Please choose from {self.categories}."
            )
        pattern = rf"\[{category}\]:\s*(.*?)(?:\n\s*\n|\Z)"
        category_text = re.search(pattern, response, re.DOTALL)
        sub_category_dict_sentences = {}
        for sub_category in self.sub_categories:
            sub_category_dict_sentences[sub_category] = []

        if not category_text:
            return sub_category_dict_sentences
        if category_text.group(1).startswith("No"):
            return sub_category_dict_sentences

        if category == "Matched Findings":
            return (
                category_text.group(1).rsplit(":", 1)[-1].rsplit(".", 1)[-1].split(";")
            )

        matches = sorted(re.findall(r"\([a-f]\) .*", category_text.group(1)))

        if len(matches) == 0:
            matches = sorted(re.findall(r"\([1-6]\) .*", category_text.group(1)))
            self.sub_categories = [
                f"({i})" + " " for i in range(1, len(self.sub_categories) + 1)
            ]

        for position, sub_category in enumerate(self.sub_categories):
            for match in range(len(matches)):
                if matches[match].startswith(sub_category):
                    sentences_list = (
                        matches[match].rsplit(":", 1)[-1].split(".", 1)[-1].split(";")
                    )
                    sub_category_dict_sentences[self.sub_categories[position]] = (
                        sentences_list
                    )

        return sub_category_dict_sentences

    def compute_sentences(self, response):
        return self.parse_error_sentences(response, self.categories[0])

    def get_representative_sentences(self, responses):
        list_sentences = []
        for i in responses:
            sentences = self.compute_sentences(i)
            list_sentences.append(sentences)

        dict_sentences = flatten_values_lists_of_list_dicts_to_dict(list_sentences)

        result_sentences_dict = {}

        for i in self.sub_categories:
            sentences = dict_sentences[i]
            sentences = [i for i in sentences if i.strip() != ""]
            _, sentences_of_largest_cluster = compute_largest_cluster(sentences)
            result_sentences_dict[i] = sentences_of_largest_cluster

        return result_sentences_dict

    def compute_accuracy(self, responses):
        counts = []
        for response in responses:
            _, sig_errors = self.parse_error_counts(response, self.categories[0])
            counts.append(sig_errors)

        counts = np.array(counts)

        dict_acc = {}
        for i in range(len(self.sub_categories)):
            error_counts = counts[:, i]
            accuracy = np.mean(error_counts == 0)
            dict_acc[self.sub_categories[i]] = accuracy

        return dict_acc

    def compute_summary(self):
        print("Computing summary ...")
        representative_sentences = self.get_representative_sentences(self.completions)
        accuracies = self.compute_accuracy(self.completions)
        mean = np.mean(self.green_scores)
        std = np.std(self.green_scores)

        summary = f"\n-------------{self.model_name}----------------\n [Summary]: Green average {mean} and standard deviation {std} \n [Clinically Significant Errors Analyses]: <accuracy>. <representative error>\n\n"
        for idx, sub_category in enumerate(self.sub_categories):
            accuracy = accuracies[sub_category]
            sentences = representative_sentences[sub_category]
            summary += f"{sub_category}: {accuracy}. \n {sentences} \n\n"
        summary += "----------------------------------\n"

        return mean, std, summary


if __name__ == "__main__":
    refs = [
        "Interstitial opacities without changes.",
        "Interval development of segmental heterogeneous airspace opacities throughout the lungs . No significant pneumothorax or pleural effusion . Bilateral calcified pleural plaques are scattered throughout the lungs . The heart is not significantly enlarged .",
        "Lung volumes are low, causing bronchovascular crowding. The cardiomediastinal silhouette is unremarkable. No focal consolidation, pleural effusion, or pneumothorax detected. Within the limitations of chest radiography, osseous structures are unremarkable.",
    ]
    hyps = [
        "Interstitial opacities at bases without changes.",
        "Interval development of segmental heterogeneous airspace opacities throughout the lungs . No significant pneumothorax or pleural effusion . Bilateral calcified pleural plaques are scattered throughout the lungs . The heart is not significantly enlarged .",
        "Endotracheal and nasogastric tubes have been removed. Changes of median sternotomy, with continued leftward displacement of the fourth inferiomost sternal wire. There is continued moderate-to-severe enlargement of the cardiac silhouette. Pulmonary aeration is slightly improved, with residual left lower lobe atelectasis. Stable central venous congestion and interstitial pulmonary edema. Small bilateral pleural effusions are unchanged.",
    ]

    model_name = "StanfordAIMI/GREEN-radllama2-7b"

    green_scorer = GREEN(model_name, output_dir=".")
    mean, std, green_score_list, summary, result_df = green_scorer(refs, hyps)
    print(green_score_list)
    print(summary)
    # for index, row in result_df.iterrows():
    #     print(f"Row {index}:\n")
    #     for col_name in result_df.columns:
    #         print(f"{col_name}: {row[col_name]}\n")
    #     print('-' * 80)