# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import math import logging import tarfile import tempfile import shutil import torch from torch import nn import torch.nn.functional as F from .file_utils import cached_path from .until_config import PretrainedConfig from .until_module import PreTrainedModel, LayerNorm, ACT2FN logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = {} CONFIG_NAME = 'cross_config.json' WEIGHTS_NAME = 'cross_pytorch_model.bin' class CrossConfig(PretrainedConfig): """Configuration class to store the configuration of a `CrossModel`. """ pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP config_name = CONFIG_NAME weights_name = WEIGHTS_NAME def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02): """Constructs CrossConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `CrossModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `CrossModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") class CrossEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(CrossEmbeddings, self).__init__() self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, concat_embeddings, concat_type=None): batch_size, seq_length = concat_embeddings.size(0), concat_embeddings.size(1) if concat_type is None: concat_type = torch.zeros(batch_size, concat_type).to(concat_embeddings.device) position_ids = torch.arange(seq_length, dtype=torch.long, device=concat_embeddings.device) position_ids = position_ids.unsqueeze(0).expand(concat_embeddings.size(0), -1) token_type_embeddings = self.token_type_embeddings(concat_type) position_embeddings = self.position_embeddings(position_ids) embeddings = concat_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class CrossSelfAttention(nn.Module): def __init__(self, config): super(CrossSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in CrossModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class CrossSelfOutput(nn.Module): def __init__(self, config): super(CrossSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class CrossAttention(nn.Module): def __init__(self, config): super(CrossAttention, self).__init__() self.self = CrossSelfAttention(config) self.output = CrossSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class CrossIntermediate(nn.Module): def __init__(self, config): super(CrossIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class CrossOutput(nn.Module): def __init__(self, config): super(CrossOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class CrossLayer(nn.Module): def __init__(self, config): super(CrossLayer, self).__init__() self.attention = CrossAttention(config) self.intermediate = CrossIntermediate(config) self.output = CrossOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class CrossEncoder(nn.Module): def __init__(self, config): super(CrossEncoder, self).__init__() layer = CrossLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class CrossPooler(nn.Module): def __init__(self, config): super(CrossPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class CrossPredictionHeadTransform(nn.Module): def __init__(self, config): super(CrossPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class CrossLMPredictionHead(nn.Module): def __init__(self, config, cross_model_embedding_weights): super(CrossLMPredictionHead, self).__init__() self.transform = CrossPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(cross_model_embedding_weights.size(1), cross_model_embedding_weights.size(0), bias=False) self.decoder.weight = cross_model_embedding_weights self.bias = nn.Parameter(torch.zeros(cross_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class CrossOnlyMLMHead(nn.Module): def __init__(self, config, cross_model_embedding_weights): super(CrossOnlyMLMHead, self).__init__() self.predictions = CrossLMPredictionHead(config, cross_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class CrossOnlyNSPHead(nn.Module): def __init__(self, config): super(CrossOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class CrossPreTrainingHeads(nn.Module): def __init__(self, config, cross_model_embedding_weights): super(CrossPreTrainingHeads, self).__init__() self.predictions = CrossLMPredictionHead(config, cross_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class CrossModel(PreTrainedModel): def __init__(self, config): super(CrossModel, self).__init__(config) self.embeddings = CrossEmbeddings(config) self.encoder = CrossEncoder(config) self.pooler = CrossPooler(config) self.apply(self.init_weights) def forward(self, concat_input, concat_type=None, attention_mask=None, output_all_encoded_layers=True): if attention_mask is None: attention_mask = torch.ones(concat_input.size(0), concat_input.size(1)) if concat_type is None: concat_type = torch.zeros_like(attention_mask) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(concat_input, concat_type) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output