# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import math import logging import tarfile import tempfile import shutil import numpy as np import torch from torch import nn from .file_utils import cached_path from .until_config import PretrainedConfig from .until_module import PreTrainedModel, LayerNorm, ACT2FN logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = {} CONFIG_NAME = 'decoder_config.json' WEIGHTS_NAME = 'decoder_pytorch_model.bin' class DecoderConfig(PretrainedConfig): """Configuration class to store the configuration of a `DecoderModel`. """ pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP config_name = CONFIG_NAME weights_name = WEIGHTS_NAME def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_vocab_size=2, initializer_range=0.02, max_target_embeddings=128, num_decoder_layers=1): """Constructs DecoderConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `DecoderModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. type_vocab_size: The vocabulary size of the `token_type_ids` passed into `DecoderModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. max_target_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_decoder_layers: """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.max_target_embeddings = max_target_embeddings self.num_decoder_layers = num_decoder_layers else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config, decoder_model_embedding_weights): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(decoder_model_embedding_weights.size(1), decoder_model_embedding_weights.size(0), bias=False) self.decoder.weight = decoder_model_embedding_weights self.bias = nn.Parameter(torch.zeros(decoder_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, decoder_model_embedding_weights): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, decoder_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, config): super(MultiHeadAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, q, k, v, attention_mask): mixed_query_layer = self.query(q) mixed_key_layer = self.key(k) mixed_value_layer = self.value(v) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer, attention_scores class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x output = x.transpose(1, 2) output = self.w_2(ACT2FN["gelu"](self.w_1(output))) output = output.transpose(1, 2) output = self.dropout(output) output = self.layer_norm(output + residual) return output class DecoderAttention(nn.Module): def __init__(self, config): super(DecoderAttention, self).__init__() self.att = MultiHeadAttention(config) self.output = BertSelfOutput(config) def forward(self, q, k, v, attention_mask): att_output, attention_probs = self.att(q, k, v, attention_mask) attention_output = self.output(att_output, q) return attention_output, attention_probs class EncoderLayer(nn.Module): def __init__(self, config): super(EncoderLayer, self).__init__() self.slf_attn = DecoderAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, dec_input, slf_attn_mask=None): slf_output, slf_att_scores = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask) intermediate_output = self.intermediate(slf_output) dec_output = self.output(intermediate_output, slf_output) return dec_output, slf_att_scores class DecoderLayer(nn.Module): def __init__(self, config): super(DecoderLayer, self).__init__() self.slf_attn = DecoderAttention(config) self.enc_attn = DecoderAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None): slf_output, _ = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask) dec_output, dec_att_scores = self.enc_attn(slf_output, enc_output, enc_output, dec_enc_attn_mask) intermediate_output = self.intermediate(dec_output) dec_output = self.output(intermediate_output, dec_output) return dec_output, dec_att_scores class DecoderEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight): super(DecoderEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_target_embeddings, config.hidden_size) self.word_embeddings.weight = decoder_word_embeddings_weight self.position_embeddings.weight = decoder_position_embeddings_weight # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class Encoder(nn.Module): def __init__(self, config): super(Encoder, self).__init__() layer = EncoderLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)]) def forward(self, hidden_states, self_attn_mask, output_all_encoded_layers=False): dec_att_scores = None all_encoder_layers = [] all_dec_att_probs = [] for layer_module in self.layer: hidden_states, dec_att_scores = layer_module(hidden_states, self_attn_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) all_dec_att_probs.append(dec_att_scores) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) all_dec_att_probs.append(dec_att_scores) return all_encoder_layers, all_dec_att_probs class Decoder(nn.Module): def __init__(self, config): super(Decoder, self).__init__() layer = DecoderLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)]) def forward(self, hidden_states, encoder_outs, self_attn_mask, attention_mask, output_all_encoded_layers=False): dec_att_scores = None all_encoder_layers = [] all_dec_att_probs = [] for i, layer_module in enumerate(self.layer): if isinstance(encoder_outs, list): hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs[i], self_attn_mask, attention_mask) else: hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs, self_attn_mask, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) all_dec_att_probs.append(dec_att_scores) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) all_dec_att_probs.append(dec_att_scores) return all_encoder_layers, all_dec_att_probs class DecoderClassifier(nn.Module): def __init__(self, config, embedding_weights): super(DecoderClassifier, self).__init__() self.cls = BertOnlyMLMHead(config, embedding_weights) def forward(self, hidden_states): cls_scores = self.cls(hidden_states) return cls_scores class DecoderModel(PreTrainedModel): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments final_norm (bool, optional): apply layer norm to the output of the final decoder layer (default: True). """ def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight): super(DecoderModel, self).__init__(config) self.config = config self.max_target_length = config.max_target_embeddings self.embeddings = DecoderEmbeddings(config, decoder_word_embeddings_weight, decoder_position_embeddings_weight) self.decoder = Decoder(config) self.encoder = Encoder(config) self.classifier = DecoderClassifier(config, decoder_word_embeddings_weight) self.apply(self.init_weights) def forward(self, input_ids, encoder_outs=None, answer_mask=None, encoder_mask=None): """ Args: input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_outs (Tensor, optional): output from the encoder, used for encoder-side attention Returns: tuple: - the last decoder layer's output of shape `(batch, tgt_len, vocab)` - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` """ embedding_output = self.embeddings(input_ids) extended_encoder_mask = encoder_mask.unsqueeze(1).unsqueeze(2) # b x 1 x 1 x ls extended_encoder_mask = extended_encoder_mask.to(dtype=self.dtype) # fp16 compatibility extended_encoder_mask = (1.0 - extended_encoder_mask) * -10000.0 extended_answer_mask = answer_mask.unsqueeze(1).unsqueeze(2) extended_answer_mask = extended_answer_mask.to(dtype=self.dtype) # fp16 compatibility sz_b, len_s, _ = embedding_output.size() subsequent_mask = torch.triu(torch.ones((len_s, len_s), device=embedding_output.device, dtype=embedding_output.dtype), diagonal=1) self_attn_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1).unsqueeze(1) # b x 1 x ls x ls slf_attn_mask = ((1.0 - extended_answer_mask) + self_attn_mask).gt(0).to(dtype=self.dtype) self_attn_mask = slf_attn_mask * -10000.0 encoder_outs, _ = self.encoder(encoder_outs, extended_encoder_mask, output_all_encoded_layers=True) # encoder_outs = encoder_outs[-1] decoded_layers, dec_att_scores = self.decoder(embedding_output, encoder_outs, self_attn_mask, extended_encoder_mask, ) sequence_output = decoded_layers[-1] cls_scores = self.classifier(sequence_output) return cls_scores