Spaces:
Runtime error
Runtime error
File size: 10,786 Bytes
8de8135 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Ultralytics YOLO π, AGPL-3.0 license
from collections import defaultdict
import cv2
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator, colors
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Point, Polygon
class ObjectCounter:
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
def __init__(
self,
classes_names,
reg_pts=None,
count_reg_color=(255, 0, 255),
count_txt_color=(0, 0, 0),
count_bg_color=(255, 255, 255),
line_thickness=2,
track_thickness=2,
view_img=False,
view_in_counts=True,
view_out_counts=True,
draw_tracks=False,
track_color=None,
region_thickness=5,
line_dist_thresh=15,
cls_txtdisplay_gap=50,
):
"""
Initializes the ObjectCounter with various tracking and counting parameters.
Args:
classes_names (dict): Dictionary of class names.
reg_pts (list): List of points defining the counting region.
count_reg_color (tuple): RGB color of the counting region.
count_txt_color (tuple): RGB color of the count text.
count_bg_color (tuple): RGB color of the count text background.
line_thickness (int): Line thickness for bounding boxes.
track_thickness (int): Thickness of the track lines.
view_img (bool): Flag to control whether to display the video stream.
view_in_counts (bool): Flag to control whether to display the in counts on the video stream.
view_out_counts (bool): Flag to control whether to display the out counts on the video stream.
draw_tracks (bool): Flag to control whether to draw the object tracks.
track_color (tuple): RGB color of the tracks.
region_thickness (int): Thickness of the object counting region.
line_dist_thresh (int): Euclidean distance threshold for line counter.
cls_txtdisplay_gap (int): Display gap between each class count.
"""
# Mouse events
self.is_drawing = False
self.selected_point = None
# Region & Line Information
self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts
self.line_dist_thresh = line_dist_thresh
self.counting_region = None
self.region_color = count_reg_color
self.region_thickness = region_thickness
# Image and annotation Information
self.im0 = None
self.tf = line_thickness
self.view_img = view_img
self.view_in_counts = view_in_counts
self.view_out_counts = view_out_counts
self.names = classes_names # Classes names
self.annotator = None # Annotator
self.window_name = "Ultralytics YOLOv8 Object Counter"
# Object counting Information
self.in_counts = 0
self.out_counts = 0
self.count_ids = []
self.class_wise_count = {}
self.count_txt_thickness = 0
self.count_txt_color = count_txt_color
self.count_bg_color = count_bg_color
self.cls_txtdisplay_gap = cls_txtdisplay_gap
self.fontsize = 0.6
# Tracks info
self.track_history = defaultdict(list)
self.track_thickness = track_thickness
self.draw_tracks = draw_tracks
self.track_color = track_color
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
# Initialize counting region
if len(self.reg_pts) == 2:
print("Line Counter Initiated.")
self.counting_region = LineString(self.reg_pts)
elif len(self.reg_pts) >= 3:
print("Polygon Counter Initiated.")
self.counting_region = Polygon(self.reg_pts)
else:
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
print("Using Line Counter Now")
self.counting_region = LineString(self.reg_pts)
def mouse_event_for_region(self, event, x, y, flags, params):
"""
Handles mouse events for defining and moving the counting region in a real-time video stream.
Args:
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
x (int): The x-coordinate of the mouse pointer.
y (int): The y-coordinate of the mouse pointer.
flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
params (dict): Additional parameters for the function.
"""
if event == cv2.EVENT_LBUTTONDOWN:
for i, point in enumerate(self.reg_pts):
if (
isinstance(point, (tuple, list))
and len(point) >= 2
and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
):
self.selected_point = i
self.is_drawing = True
break
elif event == cv2.EVENT_MOUSEMOVE:
if self.is_drawing and self.selected_point is not None:
self.reg_pts[self.selected_point] = (x, y)
self.counting_region = Polygon(self.reg_pts)
elif event == cv2.EVENT_LBUTTONUP:
self.is_drawing = False
self.selected_point = None
def extract_and_process_tracks(self, tracks):
"""Extracts and processes tracks for object counting in a video stream."""
# Annotator Init and region drawing
self.annotator = Annotator(self.im0, self.tf, self.names)
# Draw region or line
self.annotator.draw_region(reg_pts=self.reg_pts, color=self.region_color, thickness=self.region_thickness)
if tracks[0].boxes.id is not None:
boxes = tracks[0].boxes.xyxy.cpu()
clss = tracks[0].boxes.cls.cpu().tolist()
track_ids = tracks[0].boxes.id.int().cpu().tolist()
# Extract tracks
for box, track_id, cls in zip(boxes, track_ids, clss):
# Draw bounding box
self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))
# Store class info
if self.names[cls] not in self.class_wise_count:
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
# Draw Tracks
track_line = self.track_history[track_id]
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
if len(track_line) > 30:
track_line.pop(0)
# Draw track trails
if self.draw_tracks:
self.annotator.draw_centroid_and_tracks(
track_line,
color=self.track_color or colors(int(track_id), True),
track_thickness=self.track_thickness,
)
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
# Count objects in any polygon
if len(self.reg_pts) >= 3:
is_inside = self.counting_region.contains(Point(track_line[-1]))
if prev_position is not None and is_inside and track_id not in self.count_ids:
self.count_ids.append(track_id)
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.reg_pts) == 2:
if prev_position is not None and track_id not in self.count_ids:
distance = Point(track_line[-1]).distance(self.counting_region)
if distance < self.line_dist_thresh and track_id not in self.count_ids:
self.count_ids.append(track_id)
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
continue
elif not self.view_in_counts:
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
if labels_dict:
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
def display_frames(self):
"""Displays the current frame with annotations and regions in a window."""
if self.env_check:
cv2.namedWindow(self.window_name)
if len(self.reg_pts) == 4: # only add mouse event If user drawn region
cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts})
cv2.imshow(self.window_name, self.im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return
def start_counting(self, im0, tracks):
"""
Main function to start the object counting process.
Args:
im0 (ndarray): Current frame from the video stream.
tracks (list): List of tracks obtained from the object tracking process.
"""
self.im0 = im0 # store image
self.extract_and_process_tracks(tracks) # draw region even if no objects
if self.view_img:
self.display_frames()
return self.im0
if __name__ == "__main__":
classes_names = {0: "person", 1: "car"} # example class names
ObjectCounter(classes_names)
|