File size: 10,786 Bytes
8de8135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Ultralytics YOLO πŸš€, AGPL-3.0 license

from collections import defaultdict

import cv2

from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator, colors

check_requirements("shapely>=2.0.0")

from shapely.geometry import LineString, Point, Polygon


class ObjectCounter:
    """A class to manage the counting of objects in a real-time video stream based on their tracks."""

    def __init__(
        self,
        classes_names,
        reg_pts=None,
        count_reg_color=(255, 0, 255),
        count_txt_color=(0, 0, 0),
        count_bg_color=(255, 255, 255),
        line_thickness=2,
        track_thickness=2,
        view_img=False,
        view_in_counts=True,
        view_out_counts=True,
        draw_tracks=False,
        track_color=None,
        region_thickness=5,
        line_dist_thresh=15,
        cls_txtdisplay_gap=50,
    ):
        """
        Initializes the ObjectCounter with various tracking and counting parameters.

        Args:
            classes_names (dict): Dictionary of class names.
            reg_pts (list): List of points defining the counting region.
            count_reg_color (tuple): RGB color of the counting region.
            count_txt_color (tuple): RGB color of the count text.
            count_bg_color (tuple): RGB color of the count text background.
            line_thickness (int): Line thickness for bounding boxes.
            track_thickness (int): Thickness of the track lines.
            view_img (bool): Flag to control whether to display the video stream.
            view_in_counts (bool): Flag to control whether to display the in counts on the video stream.
            view_out_counts (bool): Flag to control whether to display the out counts on the video stream.
            draw_tracks (bool): Flag to control whether to draw the object tracks.
            track_color (tuple): RGB color of the tracks.
            region_thickness (int): Thickness of the object counting region.
            line_dist_thresh (int): Euclidean distance threshold for line counter.
            cls_txtdisplay_gap (int): Display gap between each class count.
        """

        # Mouse events
        self.is_drawing = False
        self.selected_point = None

        # Region & Line Information
        self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts
        self.line_dist_thresh = line_dist_thresh
        self.counting_region = None
        self.region_color = count_reg_color
        self.region_thickness = region_thickness

        # Image and annotation Information
        self.im0 = None
        self.tf = line_thickness
        self.view_img = view_img
        self.view_in_counts = view_in_counts
        self.view_out_counts = view_out_counts

        self.names = classes_names  # Classes names
        self.annotator = None  # Annotator
        self.window_name = "Ultralytics YOLOv8 Object Counter"

        # Object counting Information
        self.in_counts = 0
        self.out_counts = 0
        self.count_ids = []
        self.class_wise_count = {}
        self.count_txt_thickness = 0
        self.count_txt_color = count_txt_color
        self.count_bg_color = count_bg_color
        self.cls_txtdisplay_gap = cls_txtdisplay_gap
        self.fontsize = 0.6

        # Tracks info
        self.track_history = defaultdict(list)
        self.track_thickness = track_thickness
        self.draw_tracks = draw_tracks
        self.track_color = track_color

        # Check if environment supports imshow
        self.env_check = check_imshow(warn=True)

        # Initialize counting region
        if len(self.reg_pts) == 2:
            print("Line Counter Initiated.")
            self.counting_region = LineString(self.reg_pts)
        elif len(self.reg_pts) >= 3:
            print("Polygon Counter Initiated.")
            self.counting_region = Polygon(self.reg_pts)
        else:
            print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
            print("Using Line Counter Now")
            self.counting_region = LineString(self.reg_pts)

    def mouse_event_for_region(self, event, x, y, flags, params):
        """
        Handles mouse events for defining and moving the counting region in a real-time video stream.

        Args:
            event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
            x (int): The x-coordinate of the mouse pointer.
            y (int): The y-coordinate of the mouse pointer.
            flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY,  cv2.EVENT_FLAG_SHIFTKEY, etc.).
            params (dict): Additional parameters for the function.
        """
        if event == cv2.EVENT_LBUTTONDOWN:
            for i, point in enumerate(self.reg_pts):
                if (
                    isinstance(point, (tuple, list))
                    and len(point) >= 2
                    and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
                ):
                    self.selected_point = i
                    self.is_drawing = True
                    break

        elif event == cv2.EVENT_MOUSEMOVE:
            if self.is_drawing and self.selected_point is not None:
                self.reg_pts[self.selected_point] = (x, y)
                self.counting_region = Polygon(self.reg_pts)

        elif event == cv2.EVENT_LBUTTONUP:
            self.is_drawing = False
            self.selected_point = None

    def extract_and_process_tracks(self, tracks):
        """Extracts and processes tracks for object counting in a video stream."""

        # Annotator Init and region drawing
        self.annotator = Annotator(self.im0, self.tf, self.names)

        # Draw region or line
        self.annotator.draw_region(reg_pts=self.reg_pts, color=self.region_color, thickness=self.region_thickness)

        if tracks[0].boxes.id is not None:
            boxes = tracks[0].boxes.xyxy.cpu()
            clss = tracks[0].boxes.cls.cpu().tolist()
            track_ids = tracks[0].boxes.id.int().cpu().tolist()

            # Extract tracks
            for box, track_id, cls in zip(boxes, track_ids, clss):
                # Draw bounding box
                self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))

                # Store class info
                if self.names[cls] not in self.class_wise_count:
                    self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}

                # Draw Tracks
                track_line = self.track_history[track_id]
                track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
                if len(track_line) > 30:
                    track_line.pop(0)

                # Draw track trails
                if self.draw_tracks:
                    self.annotator.draw_centroid_and_tracks(
                        track_line,
                        color=self.track_color or colors(int(track_id), True),
                        track_thickness=self.track_thickness,
                    )

                prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None

                # Count objects in any polygon
                if len(self.reg_pts) >= 3:
                    is_inside = self.counting_region.contains(Point(track_line[-1]))

                    if prev_position is not None and is_inside and track_id not in self.count_ids:
                        self.count_ids.append(track_id)

                        if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
                            self.in_counts += 1
                            self.class_wise_count[self.names[cls]]["IN"] += 1
                        else:
                            self.out_counts += 1
                            self.class_wise_count[self.names[cls]]["OUT"] += 1

                # Count objects using line
                elif len(self.reg_pts) == 2:
                    if prev_position is not None and track_id not in self.count_ids:
                        distance = Point(track_line[-1]).distance(self.counting_region)
                        if distance < self.line_dist_thresh and track_id not in self.count_ids:
                            self.count_ids.append(track_id)

                            if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
                                self.in_counts += 1
                                self.class_wise_count[self.names[cls]]["IN"] += 1
                            else:
                                self.out_counts += 1
                                self.class_wise_count[self.names[cls]]["OUT"] += 1

        labels_dict = {}

        for key, value in self.class_wise_count.items():
            if value["IN"] != 0 or value["OUT"] != 0:
                if not self.view_in_counts and not self.view_out_counts:
                    continue
                elif not self.view_in_counts:
                    labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
                elif not self.view_out_counts:
                    labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
                else:
                    labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"

        if labels_dict:
            self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)

    def display_frames(self):
        """Displays the current frame with annotations and regions in a window."""
        if self.env_check:
            cv2.namedWindow(self.window_name)
            if len(self.reg_pts) == 4:  # only add mouse event If user drawn region
                cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts})
            cv2.imshow(self.window_name, self.im0)
            # Break Window
            if cv2.waitKey(1) & 0xFF == ord("q"):
                return

    def start_counting(self, im0, tracks):
        """
        Main function to start the object counting process.

        Args:
            im0 (ndarray): Current frame from the video stream.
            tracks (list): List of tracks obtained from the object tracking process.
        """
        self.im0 = im0  # store image
        self.extract_and_process_tracks(tracks)  # draw region even if no objects

        if self.view_img:
            self.display_frames()
        return self.im0


if __name__ == "__main__":
    classes_names = {0: "person", 1: "car"}  # example class names
    ObjectCounter(classes_names)