File size: 9,786 Bytes
8de8135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Ultralytics YOLO πŸš€, AGPL-3.0 license

import json
from tkinter import filedialog, messagebox

import cv2
import numpy as np
from PIL import Image, ImageTk

from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator


class ParkingPtsSelection:
    def __init__(self):
        """Initializes the UI for selecting parking zone points in a tkinter window."""
        check_requirements("tkinter")

        import tkinter as tk

        self.tk = tk
        self.master = tk.Tk()
        self.master.title("Ultralytics Parking Zones Points Selector")

        # Disable window resizing
        self.master.resizable(False, False)

        # Setup canvas for image display
        self.canvas = self.tk.Canvas(self.master, bg="white")

        # Setup buttons
        button_frame = self.tk.Frame(self.master)
        button_frame.pack(side=self.tk.TOP)

        self.tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
        self.tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(
            row=0, column=1
        )
        self.tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)

        # Initialize properties
        self.image_path = None
        self.image = None
        self.canvas_image = None
        self.bounding_boxes = []
        self.current_box = []
        self.img_width = 0
        self.img_height = 0

        # Constants
        self.canvas_max_width = 1280
        self.canvas_max_height = 720

        self.master.mainloop()

    def upload_image(self):
        """Upload an image and resize it to fit canvas."""
        self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
        if not self.image_path:
            return

        self.image = Image.open(self.image_path)
        self.img_width, self.img_height = self.image.size

        # Calculate the aspect ratio and resize image
        aspect_ratio = self.img_width / self.img_height
        if aspect_ratio > 1:
            # Landscape orientation
            canvas_width = min(self.canvas_max_width, self.img_width)
            canvas_height = int(canvas_width / aspect_ratio)
        else:
            # Portrait orientation
            canvas_height = min(self.canvas_max_height, self.img_height)
            canvas_width = int(canvas_height * aspect_ratio)

        # Check if canvas is already initialized
        if self.canvas:
            self.canvas.destroy()  # Destroy previous canvas

        self.canvas = self.tk.Canvas(self.master, bg="white", width=canvas_width, height=canvas_height)
        resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
        self.canvas_image = ImageTk.PhotoImage(resized_image)
        self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)

        self.canvas.pack(side=self.tk.BOTTOM)
        self.canvas.bind("<Button-1>", self.on_canvas_click)

        # Reset bounding boxes and current box
        self.bounding_boxes = []
        self.current_box = []

    def on_canvas_click(self, event):
        """Handle mouse clicks on canvas to create points for bounding boxes."""
        self.current_box.append((event.x, event.y))
        x0, y0 = event.x - 3, event.y - 3
        x1, y1 = event.x + 3, event.y + 3
        self.canvas.create_oval(x0, y0, x1, y1, fill="red")

        if len(self.current_box) == 4:
            self.bounding_boxes.append(self.current_box)
            self.draw_bounding_box(self.current_box)
            self.current_box = []

    def draw_bounding_box(self, box):
        """
        Draw bounding box on canvas.

        Args:
            box (list): Bounding box data
        """
        for i in range(4):
            x1, y1 = box[i]
            x2, y2 = box[(i + 1) % 4]
            self.canvas.create_line(x1, y1, x2, y2, fill="blue", width=2)

    def remove_last_bounding_box(self):
        """Remove the last drawn bounding box from canvas."""
        if self.bounding_boxes:
            self.bounding_boxes.pop()  # Remove the last bounding box
            self.canvas.delete("all")  # Clear the canvas
            self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)  # Redraw the image

            # Redraw all bounding boxes
            for box in self.bounding_boxes:
                self.draw_bounding_box(box)

            messagebox.showinfo("Success", "Last bounding box removed.")
        else:
            messagebox.showwarning("Warning", "No bounding boxes to remove.")

    def save_to_json(self):
        """Saves rescaled bounding boxes to 'bounding_boxes.json' based on image-to-canvas size ratio."""
        canvas_width, canvas_height = self.canvas.winfo_width(), self.canvas.winfo_height()
        width_scaling_factor = self.img_width / canvas_width
        height_scaling_factor = self.img_height / canvas_height
        bounding_boxes_data = []
        for box in self.bounding_boxes:
            rescaled_box = []
            for x, y in box:
                rescaled_x = int(x * width_scaling_factor)
                rescaled_y = int(y * height_scaling_factor)
                rescaled_box.append((rescaled_x, rescaled_y))
            bounding_boxes_data.append({"points": rescaled_box})
        with open("bounding_boxes.json", "w") as json_file:
            json.dump(bounding_boxes_data, json_file, indent=4)

        messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")


class ParkingManagement:
    def __init__(
        self,
        model_path,
        txt_color=(0, 0, 0),
        bg_color=(255, 255, 255),
        occupied_region_color=(0, 255, 0),
        available_region_color=(0, 0, 255),
        margin=10,
    ):
        """
        Initializes the parking management system with a YOLOv8 model and visualization settings.

        Args:
            model_path (str): Path to the YOLOv8 model.
            txt_color (tuple): RGB color tuple for text.
            bg_color (tuple): RGB color tuple for background.
            occupied_region_color (tuple): RGB color tuple for occupied regions.
            available_region_color (tuple): RGB color tuple for available regions.
            margin (int): Margin for text display.
        """
        # Model path and initialization
        self.model_path = model_path
        self.model = self.load_model()

        # Labels dictionary
        self.labels_dict = {"Occupancy": 0, "Available": 0}

        # Visualization details
        self.margin = margin
        self.bg_color = bg_color
        self.txt_color = txt_color
        self.occupied_region_color = occupied_region_color
        self.available_region_color = available_region_color

        self.window_name = "Ultralytics YOLOv8 Parking Management System"
        # Check if environment supports imshow
        self.env_check = check_imshow(warn=True)

    def load_model(self):
        """Load the Ultralytics YOLOv8 model for inference and analytics."""
        from ultralytics import YOLO

        self.model = YOLO(self.model_path)
        return self.model

    @staticmethod
    def parking_regions_extraction(json_file):
        """
        Extract parking regions from json file.

        Args:
            json_file (str): file that have all parking slot points
        """
        with open(json_file, "r") as json_file:
            return json.load(json_file)

    def process_data(self, json_data, im0, boxes, clss):
        """
        Process the model data for parking lot management.

        Args:
            json_data (str): json data for parking lot management
            im0 (ndarray): inference image
            boxes (list): bounding boxes data
            clss (list): bounding boxes classes list

        Returns:
            filled_slots (int): total slots that are filled in parking lot
            empty_slots (int): total slots that are available in parking lot
        """
        annotator = Annotator(im0)
        total_slots, filled_slots = len(json_data), 0
        empty_slots = total_slots

        for region in json_data:
            points = region["points"]
            points_array = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
            region_occupied = False

            for box, cls in zip(boxes, clss):
                x_center = int((box[0] + box[2]) / 2)
                y_center = int((box[1] + box[3]) / 2)
                text = f"{self.model.names[int(cls)]}"

                annotator.display_objects_labels(
                    im0, text, self.txt_color, self.bg_color, x_center, y_center, self.margin
                )
                dist = cv2.pointPolygonTest(points_array, (x_center, y_center), False)
                if dist >= 0:
                    region_occupied = True
                    break

            color = self.occupied_region_color if region_occupied else self.available_region_color
            cv2.polylines(im0, [points_array], isClosed=True, color=color, thickness=2)
            if region_occupied:
                filled_slots += 1
                empty_slots -= 1

        self.labels_dict["Occupancy"] = filled_slots
        self.labels_dict["Available"] = empty_slots

        annotator.display_analytics(im0, self.labels_dict, self.txt_color, self.bg_color, self.margin)

    def display_frames(self, im0):
        """
        Display frame.

        Args:
            im0 (ndarray): inference image
        """
        if self.env_check:
            cv2.namedWindow(self.window_name)
            cv2.imshow(self.window_name, im0)
            # Break Window
            if cv2.waitKey(1) & 0xFF == ord("q"):
                return