Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
from collections import defaultdict | |
import cv2 | |
from ultralytics.utils.checks import check_imshow, check_requirements | |
from ultralytics.utils.plotting import Annotator, colors | |
check_requirements("shapely>=2.0.0") | |
from shapely.geometry import Point, Polygon | |
class QueueManager: | |
"""A class to manage the queue in a real-time video stream based on object tracks.""" | |
def __init__( | |
self, | |
classes_names, | |
reg_pts=None, | |
line_thickness=2, | |
track_thickness=2, | |
view_img=False, | |
region_color=(255, 0, 255), | |
view_queue_counts=True, | |
draw_tracks=False, | |
count_txt_color=(255, 255, 255), | |
track_color=None, | |
region_thickness=5, | |
fontsize=0.7, | |
): | |
""" | |
Initializes the QueueManager with specified parameters for tracking and counting objects. | |
Args: | |
classes_names (dict): A dictionary mapping class IDs to class names. | |
reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined | |
rectangle. | |
line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2. | |
track_thickness (int, optional): Thickness of the track lines. Defaults to 2. | |
view_img (bool, optional): Whether to display the image frames. Defaults to False. | |
region_color (tuple, optional): Color of the counting region lines (BGR). Defaults to (255, 0, 255). | |
view_queue_counts (bool, optional): Whether to display the queue counts. Defaults to True. | |
draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False. | |
count_txt_color (tuple, optional): Color of the count text (BGR). Defaults to (255, 255, 255). | |
track_color (tuple, optional): Color of the tracks. If None, different colors will be used for different | |
tracks. Defaults to None. | |
region_thickness (int, optional): Thickness of the counting region lines. Defaults to 5. | |
fontsize (float, optional): Font size for the text annotations. Defaults to 0.7. | |
""" | |
# Mouse events state | |
self.is_drawing = False | |
self.selected_point = None | |
# Region & Line Information | |
self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)] | |
self.counting_region = ( | |
Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)]) | |
) | |
self.region_color = region_color | |
self.region_thickness = region_thickness | |
# Image and annotation Information | |
self.im0 = None | |
self.tf = line_thickness | |
self.view_img = view_img | |
self.view_queue_counts = view_queue_counts | |
self.fontsize = fontsize | |
self.names = classes_names # Class names | |
self.annotator = None # Annotator | |
self.window_name = "Ultralytics YOLOv8 Queue Manager" | |
# Object counting Information | |
self.counts = 0 | |
self.count_txt_color = count_txt_color | |
# Tracks info | |
self.track_history = defaultdict(list) | |
self.track_thickness = track_thickness | |
self.draw_tracks = draw_tracks | |
self.track_color = track_color | |
# Check if environment supports imshow | |
self.env_check = check_imshow(warn=True) | |
def extract_and_process_tracks(self, tracks): | |
"""Extracts and processes tracks for queue management in a video stream.""" | |
# Initialize annotator and draw the queue region | |
self.annotator = Annotator(self.im0, self.tf, self.names) | |
if tracks[0].boxes.id is not None: | |
boxes = tracks[0].boxes.xyxy.cpu() | |
clss = tracks[0].boxes.cls.cpu().tolist() | |
track_ids = tracks[0].boxes.id.int().cpu().tolist() | |
# Extract tracks | |
for box, track_id, cls in zip(boxes, track_ids, clss): | |
# Draw bounding box | |
self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True)) | |
# Update track history | |
track_line = self.track_history[track_id] | |
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) | |
if len(track_line) > 30: | |
track_line.pop(0) | |
# Draw track trails if enabled | |
if self.draw_tracks: | |
self.annotator.draw_centroid_and_tracks( | |
track_line, | |
color=self.track_color or colors(int(track_id), True), | |
track_thickness=self.track_thickness, | |
) | |
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None | |
# Check if the object is inside the counting region | |
if len(self.reg_pts) >= 3: | |
is_inside = self.counting_region.contains(Point(track_line[-1])) | |
if prev_position is not None and is_inside: | |
self.counts += 1 | |
# Display queue counts | |
label = f"Queue Counts : {str(self.counts)}" | |
if label is not None: | |
self.annotator.queue_counts_display( | |
label, | |
points=self.reg_pts, | |
region_color=self.region_color, | |
txt_color=self.count_txt_color, | |
) | |
self.counts = 0 # Reset counts after displaying | |
self.display_frames() | |
def display_frames(self): | |
"""Displays the current frame with annotations.""" | |
if self.env_check: | |
self.annotator.draw_region(reg_pts=self.reg_pts, thickness=self.region_thickness, color=self.region_color) | |
cv2.namedWindow(self.window_name) | |
cv2.imshow(self.window_name, self.im0) | |
# Close window on 'q' key press | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
return | |
def process_queue(self, im0, tracks): | |
""" | |
Main function to start the queue management process. | |
Args: | |
im0 (ndarray): Current frame from the video stream. | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.im0 = im0 # Store the current frame | |
self.extract_and_process_tracks(tracks) # Extract and process tracks | |
if self.view_img: | |
self.display_frames() # Display the frame if enabled | |
return self.im0 | |
if __name__ == "__main__": | |
classes_names = {0: "person", 1: "car"} # example class names | |
queue_manager = QueueManager(classes_names) | |