Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
from collections import defaultdict | |
from time import time | |
import cv2 | |
import numpy as np | |
from ultralytics.utils.checks import check_imshow | |
from ultralytics.utils.plotting import Annotator, colors | |
class SpeedEstimator: | |
"""A class to estimate the speed of objects in a real-time video stream based on their tracks.""" | |
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10): | |
""" | |
Initializes the SpeedEstimator with the given parameters. | |
Args: | |
names (dict): Dictionary of class names. | |
reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)]. | |
view_img (bool, optional): Whether to display the image with annotations. Defaults to False. | |
line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2. | |
region_thickness (int, optional): Thickness of the region lines. Defaults to 5. | |
spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10. | |
""" | |
# Visual & image information | |
self.im0 = None | |
self.annotator = None | |
self.view_img = view_img | |
# Region information | |
self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)] | |
self.region_thickness = region_thickness | |
# Tracking information | |
self.clss = None | |
self.names = names | |
self.boxes = None | |
self.trk_ids = None | |
self.trk_pts = None | |
self.line_thickness = line_thickness | |
self.trk_history = defaultdict(list) | |
# Speed estimation information | |
self.current_time = 0 | |
self.dist_data = {} | |
self.trk_idslist = [] | |
self.spdl_dist_thresh = spdl_dist_thresh | |
self.trk_previous_times = {} | |
self.trk_previous_points = {} | |
# Check if the environment supports imshow | |
self.env_check = check_imshow(warn=True) | |
def extract_tracks(self, tracks): | |
""" | |
Extracts results from the provided tracking data. | |
Args: | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.boxes = tracks[0].boxes.xyxy.cpu() | |
self.clss = tracks[0].boxes.cls.cpu().tolist() | |
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() | |
def store_track_info(self, track_id, box): | |
""" | |
Stores track data. | |
Args: | |
track_id (int): Object track id. | |
box (list): Object bounding box data. | |
Returns: | |
(list): Updated tracking history for the given track_id. | |
""" | |
track = self.trk_history[track_id] | |
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)) | |
track.append(bbox_center) | |
if len(track) > 30: | |
track.pop(0) | |
self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) | |
return track | |
def plot_box_and_track(self, track_id, box, cls, track): | |
""" | |
Plots track and bounding box. | |
Args: | |
track_id (int): Object track id. | |
box (list): Object bounding box data. | |
cls (str): Object class name. | |
track (list): Tracking history for drawing tracks path. | |
""" | |
speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)] | |
bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255) | |
self.annotator.box_label(box, speed_label, bbox_color) | |
cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1) | |
cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1) | |
def calculate_speed(self, trk_id, track): | |
""" | |
Calculates the speed of an object. | |
Args: | |
trk_id (int): Object track id. | |
track (list): Tracking history for drawing tracks path. | |
""" | |
if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]: | |
return | |
if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh: | |
direction = "known" | |
elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh: | |
direction = "known" | |
else: | |
direction = "unknown" | |
if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist: | |
self.trk_idslist.append(trk_id) | |
time_difference = time() - self.trk_previous_times[trk_id] | |
if time_difference > 0: | |
dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1]) | |
speed = dist_difference / time_difference | |
self.dist_data[trk_id] = speed | |
self.trk_previous_times[trk_id] = time() | |
self.trk_previous_points[trk_id] = track[-1] | |
def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)): | |
""" | |
Estimates the speed of objects based on tracking data. | |
Args: | |
im0 (ndarray): Image. | |
tracks (list): List of tracks obtained from the object tracking process. | |
region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0). | |
Returns: | |
(ndarray): The image with annotated boxes and tracks. | |
""" | |
self.im0 = im0 | |
if tracks[0].boxes.id is None: | |
if self.view_img and self.env_check: | |
self.display_frames() | |
return im0 | |
self.extract_tracks(tracks) | |
self.annotator = Annotator(self.im0, line_width=self.line_thickness) | |
self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness) | |
for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss): | |
track = self.store_track_info(trk_id, box) | |
if trk_id not in self.trk_previous_times: | |
self.trk_previous_times[trk_id] = 0 | |
self.plot_box_and_track(trk_id, box, cls, track) | |
self.calculate_speed(trk_id, track) | |
if self.view_img and self.env_check: | |
self.display_frames() | |
return im0 | |
def display_frames(self): | |
"""Displays the current frame.""" | |
cv2.imshow("Ultralytics Speed Estimation", self.im0) | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
return | |
if __name__ == "__main__": | |
names = {0: "person", 1: "car"} # example class names | |
speed_estimator = SpeedEstimator(names) | |