Spaces:
Sleeping
Sleeping
File size: 8,730 Bytes
b4915c6 2c7920e b4915c6 75266a7 b4915c6 0c6abca b4915c6 902c2bc b4915c6 902c2bc b4915c6 0c6abca b4915c6 902c2bc d14a9b0 b4915c6 902c2bc b4915c6 2c7920e b4915c6 2c7920e b4915c6 2c7920e 75266a7 6540e42 75266a7 6540e42 75266a7 a6e6568 d14a9b0 a6e6568 d14a9b0 a6e6568 3291e63 a6e6568 05e7a0f 3291e63 05e7a0f a6e6568 d14a9b0 a6e6568 05e7a0f 3291e63 05e7a0f a6e6568 6540e42 a6e6568 d14a9b0 a6e6568 75266a7 6540e42 75266a7 a6e6568 75266a7 3291e63 75266a7 6540e42 75266a7 6540e42 a6e6568 2c7920e 75266a7 2c7920e b4915c6 2c7920e b4915c6 2c7920e b4915c6 2c7920e b4915c6 2c7920e b4915c6 2c7920e b4915c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import logging
import time
logger = logging.getLogger("gradio_chat_001")
logger.setLevel(logging.INFO)
logging.debug("Starting logging for gradio_chat_001.")
categories = [
"Legal", "Specification", "Facts and Figures",
"Publication", "Payment Scheme",
"Alternative Payment Systems", "Crypto Payments",
"Card Payments", "Banking", "Regulations", "Account Payments"
]
logging.debug("Categories to classify: " + repr(categories))
# DESCRIPTION = """\
# # Llama 3.2 3B Instruct
# Llama 3.2 3B is Meta's latest iteration of open LLMs.
# This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
# For more details, please check [our post](https://huggingface.co/blog/llama32).
# """
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
logger.warn("Wants to use CUDA, stop it!")
USE_CUDA = False
device = torch.device("cuda:0" if USE_CUDA else "cpu")
# model_id = "meta-llama/Llama-3.2-3B-Instruct"
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
logger.info("Created model: " + model_id)
logger.info("Model repr: " + repr(model))
logger.info("Tokenizer repr: " + repr(tokenizer))
model.eval()
# Example:
# from transformers import AutoTokenizer, DeepseekV3ForCausalLM
# model = DeepseekV3ForCausalLM.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf")
# tokenizer = AutoTokenizer.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf")
# prompt = "Hey, are you conscious? Can you talk to me?"
# inputs = tokenizer(prompt, return_tensors="pt")
# # Generate
# generate_ids = model.generate(inputs.input_ids, max_length=30)
# tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# @spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
logger.warn(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def analyse_time_array(arr, extended=False):
length = len(arr)
if length == 0:
return "Empty"
if length == 1:
return "Start"
start = arr[0]
end = arr[-1]
diff = end - start
msg = f"{length-1} Tokens in {diff}s | {diff/length} Tokens/s"
if extended:
diffs = sorted([arr[i+1]-arr[i] for i in range(0, length-1)])
# msg += "\nDiffs between tokens:"
msg += "\nBest/shortest: " + ", ".join(f"{x:.02f}s" for x in diffs[:5])
msg += "\nWorst/longest: " + ", ".join(f"{x:.02f}s" for x in diffs[-5:])
return msg
SPACER = "\n\n" + "-"*80 + "\n\n"
def try_generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
try:
logger.info("Create input")
yield "<Create Input>"
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
logger.warn(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
yield f"<input_ids>{repr(input_ids)}</input_ids>"
input_ids = input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
except Exception as e:
logger.warn("Failed to create input parameters: " + repr(e))
yield "Failed to create input parameters: " + repr(e)
return
try:
streamer = TextIteratorStreamer(tokenizer, timeout=120.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
except Exception as e:
msg ="Failed to create streamer: " + repr(e)
logger.warning(msg)
yield msg
return
try:
yield "<start thread>"
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
except Exception as e:
msg = "Failed to create thread: " + repr(e)
logger.warning(msg)
yield msg
return
outputs = []
times = [time.time()]
try:
yield "<start text>"
for text in streamer:
outputs.append(text)
times.append(time.time())
# yield "".join(outputs)
msg = "".join(outputs)
info = analyse_time_array(times, True)
yield msg+SPACER+info
except Exception as e:
n = len(outputs)
exp = repr(e)
error = f"Failed creating output @ position {n}: {exp}"
logger.warning(error)
msg = "".join(outputs)
info = analyse_time_array(times, True)
yield msg+SPACER+info+SPACER+error
# yield f"{output}\n--------------------\n{msg}"
msg = "".join(outputs)
info = analyse_time_array(times, True)
yield msg+SPACER+info+"\n--- DONE ---"
demo = gr.ChatInterface(
fn=try_generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
type="messages",
# description=DESCRIPTION,
# css_paths="style.css",
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|